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DataFrame ListB3
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Figure 1: The interface of Xavier within the computational notebook. A) The selection list providing data context-aware
code completions for users while typing. B) The data view displaying data contexts for user reference. During typing, Xavier
automatically expands items by showing the table schema (B2) and sample rows (B1), highlighting the most relevant data based
on user’s code. Other irrelevant data contexts are listed in the data view and folded (B3).

ABSTRACT
Data analysts frequently employ code completion tools in writ-
ing custom scripts to tackle complex tabular data wrangling tasks.

∗The work was done when Haotian Li was at HKUST.
†Di Weng is the corresponding author.

However, existing tools do not sufficiently link the data contexts
such as schemas and values with the code being edited. This not
only leads to poor code suggestions, but also frequent interruptions
in coding processes as users need additional code to locate and
understand relevant data. We introduce Xavier, a tool designed to
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enhance data wrangling script authoring in computational note-
books. Xavier maintains users’ awareness of data contexts while
providing data-aware code suggestions. It automatically highlights
the most relevant data based on the user’s code, integrates both
code and data contexts for more accurate suggestions, and instantly
previews data transformation results for easy verification. To eval-
uate the effectiveness and usability of Xavier, we conducted a user
study with 16 data analysts, showing its potential to streamline
data wrangling scripts authoring.

CCS CONCEPTS
• Human-centered computing → User interface program-
ming.

KEYWORDS
Interactive data wrangling, coding assistance

1 INTRODUCTION
Data wrangling is a crucial process in data science that involves
tasks such as data cleaning, integration and format transformation
for downstream analysis [31]. To perform complex tabular data
wrangling tasks, data analysts with programming skills often write
ad-hoc scripts. Given the tedious and time-consuming nature of
scripting, the emergence of various code completion tools, par-
ticularly AI-powered ones including IntelliSense [53] and GitHub
Copilot [18], has significantly enhanced coding efficiency in pro-
gramming environments.

Despite their widespread application, AI-powered code comple-
tion tools primarily focus on code-related features (e.g., grammar
and semantics), or code contexts, in the completion process. These
tools often overlook the metadata of datasets people are working
with, or data contexts, leading to issues when generating code. For
instance, since the underlying Large Language Models (LLMs) may
memorize training examples [5], AI-powered code completion tools
often generate wrong columns or unreasonable values [80]. Some
AI-powered code completion tools, like GitHub Copilot which has
access to original data files in the project [66], consider datasets to a
certain extent. However, they do not sufficiently link the metadata
(e.g. table schemas and unique values of columns) to the specific
code being edited. Therefore, these completion tools often fail to
generate recommendations that require a strong understanding of
datasets, such as correct column names to join two tables, or the
prefix of a data value to be removed.

The limitations of existing tools motivate us to propose a novel
coding assistance approach that links data contexts to the code be-
ing edited. However, developing such an approach presents several
challenges according to our preliminary study. First, users are often
frustrated at mistakes of AI-generated code and have to manually
specify dataset information for intelligent code completion. How-
ever, dynamically linking data contexts to reduce the effort of data
context specification remains unexplored. Additionally, locating
specific data segments that are relevant and useful for users is chal-
lenging due to the dynamic nature of user focus during editing the
incomplete code. Moreover, users have to spend considerable time
validating the transformation result of AI-generated code [12, 13].

Existing live programming tools like Projection Boxes [41] can dis-
play information of variables (e.g. runtime values) in a real-time
way as code is being edited, helping users validate the code to some
extent. However, they do not link the most relevant information
in the DataFrame variable to the code being edited, since users
often focus on a small portion of information in the variable while
editing data wrangling code. To tackle these challenges, we use
Pandas [59] as an exemplary data transformation library, delineat-
ing a strategy combining code contexts and data contexts to provide
data context-aware code completions. Additionally, we propose a
method to dynamically link code and data, highlight the relevant
data based on user’s code, and allow instant preview of data trans-
formation results for straightforward verification. Finally, an user
interface is designed, leveraging visualizations and interactions
to facilitate user’s data sensemaking in the scripting process. On
top of this, we take the computational notebook as an exemplary
programming environment that facilitates trying and iterating data
wrangling code [67] and introduce Xavier, a coding assistance ex-
tension for computational notebooks. To evaluate Xavier’s usability
and effectiveness, we conducted a counterbalanced mixed-design
user study on 16 participants, in which participants wrote data
wrangling scripts to complete a task with Xavier and another task
with a baseline tool. We find that users experienced significantly
fewer context switches and errors during scripting by using Xavier.
User feedback further confirms that Xavier helps users maintain
data context awareness and author code more smoothly throughout
the data wrangling scripting process. The major contributions are
summarized as follows:

• A preliminary study that reveals user behavior patterns in
authoring tabular data wrangling scripts and summarizes
user requirements of AI-powered coding assistants.

• A computational notebook extension, Xavier, which aids
users in maintaining awareness of data contexts during
data wrangling code authoring.

2 RELATEDWORK
In this section, we review research on data wrangling tools, coding
assistants in computational notebooks, code completion tools and
live programming tools.

2.1 Data Wrangling Tools
Data wrangling is a challenging task that involves change, re-
arrangement, and merging of data to prepare for various purposes
such as visualization and analysis [31]. Several toolkits like Pan-
das [59] in Python, as well as dplyr [56] and tidyr [79] in R, have
been developed to facilitate this process. These toolkits offer data
analysts with significant flexibility for effective data manipulation.
Nevertheless, analysts unfamiliar with Python or R may find it
time-consuming and demanding to learn a new toolkit. To address
these challenges, numerous interactive tools have been proposed
to lower the barriers associated with data wrangling.

Interactive tools for tabular data wrangling can be categorized as
either imperative or declarative. Imperative approaches [20, 31, 62]
focus on the wrangling procedures and typically provide users
with a menu of various wrangling operations. In contrast, declar-
ative approaches emphasize the specification of transformation
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outcomes. For instance, many systems allow users to compose
example target tables and automatically synthesize transforma-
tion programs [19, 30, 75]. Other tools enable users to specify the
intended tasks through declarative mappings [7] or natural lan-
guage [14, 28]. While these interactive tools help democratize the
wrangling process, they are primarily designed for users with lim-
ited experience in data wrangling and programming. Writing cus-
tom wrangling scripts remains common among data analysts, as
coding offers a more flexible and expressive way to specify the
wrangling process [55, 83]. Hence, Xavier offers coding support for
data analysts proficient in programming.

Additionally, earlier studies have focused on code recommenda-
tion for data wrangling, which can be categorized into three types
according to the smallest granularity of the output code: block-
level, line-level and token-level. Block-level code recommendation
tools [3, 9, 35] generate blocks of data wrangling code that often
include multiple transformation operations. For instance, AutoPan-
das [3] leverages program synthesis techniques to generate code
from input-output examples. Stepwise [35] and Phasewise [35] de-
compose the entire data wrangling problem into steps or phases
to facilitate steering and verification of AI-generated code. Line-
level code recommendation tools like Auto-Suggest [81] focus on
generating single-operation data wrangling code. Token-level code
recommendation tools like SnipSuggest [37] support suggesting
next few tokens such as table names or column names as users
write part of the code.

Although token-level code recommendation tools basically in-
corporate data contexts into their recommendation models, users
still face challenges in understanding and verifying the recommen-
dations. In contrast, Xavier not only links relevant data contexts
to the code being edited in its recommendation model, but also of-
fers corresponding highlighting and previews to provide on-the-fly
explanations for its recommendations.

2.2 Code Assistants in Computational
Notebooks

A vast range of code assistants have been proposed for integration
into computational notebooks, aiming to enhance the productivity
of data workers in programming tasks. These assistants can be
categorized based on stages of data analysis in which they pro-
vide recommendations: exploration (i.e. during the data exploration
stage), next-step (i.e. suggesting the next steps before typing), or
typing (i.e. offering assistance during typing).

Exploration code assistants [44, 61] help data workers discover
workflows or analysis techniques during data exploration. For ex-
ample, EDAssistant [44] aids users by finding code snippets simi-
lar to those in the current notebook through in-situ code search,
thereby inspiring the workflows in their analysis. Next-step code
assistants [8, 11, 29, 36, 52] specialize in recommending next steps
before users start typing, guiding users to continue their workflows
effectively. For instance, Wrex [11] provides spreadsheet-like inter-
faces for data manipulation by example. Jigsaw [29] leverages large
language models to enable multi-modal inputs for data wrangling
script generation. BISCUIT [8] scaffolds users understanding and
refining the LLM-generated code by introducing ephemeral UIs.
Typing code assistants [10, 18] offer real-time recommendations

while users are typing. For example, Glinda [10] combines live pro-
gramming, GUI elements, and a Domain-Specific Language (DSL)
to provide immediate feedback during programming.

However, few code assistants focus on real-time recommenda-
tions during typing. Although Glinda [10] incorporates a code com-
pletion feature, it is primarily designed for the rapid construction
of DSL structures based on language grammar. GitHub Copilot [18]
does not sufficiently link the data contexts to the specific code being
edited, which will be discussed in Section 2.3. In contrast, Xavier
focuses on code completions for data wrangling scripts, allowing
users to remain aware of data contexts during typing.

2.3 Code Completion Tools
Code completion, which suggests candidate subsequent tokens for
programmers, is a widely used feature in code editors that acceler-
ates the programming process. It has been extensively investigated
in the literature [46]. Early code completion approaches relied on
heuristic rules, such as static type information [21, 27, 60], similar
patterns from codebases [4, 24, 57], or usage frequency [40, 58, 65].
Building on the analogy between human-written code and natural
language [25], subsequent works [23, 63, 64] explored statistical
approaches that leveraged the repetitive and predictive properties
of code. With the advancement of deep neural networks, language
models based on neural networks, such as Recurrent Neural Net-
works (RNNs) and Long Short-Term Memory (LSTM), have also
been investigated [33, 43, 71] to improve the suggestion accuracy.

More recently, as Generative Pre-trained Transformers (GPT)
gained popularity in natural language processing, numerous GPT-
based models and tools have emerged [6, 47, 70]. For example,
fine-tuned on a large corpus of publicly available code on GitHub,
Codex [6] demonstrated improved accuracy in code completion. Its
production version, GitHub Copilot [18], is capable of providing
longer code completions, ranging from individual tokens to entire
functions, while maintaining a relatively high level of accuracy.

These approaches optimize the exploration and utilization of
deeper semantic information in code, primarily supporting multilin-
gual code completion and general tasks. Nevertheless, data contexts
such as schemas and values are also crucial for enhancing accuracy
in data wrangling code authoring. Besides, most code completion
tools focus on coding assistance during code authoring, which can
cause users to lose data contexts before or after code authoring,
making it difficult to locate relevant data and verify code. Therefore,
Xavier incorporates both code contexts and data contexts for more
intelligent code completions, and provides assistance for awareness
of data contexts throughout the coding process.

2.4 Live Programming Tools
Live programming provides real-time feedback (e.g. visualization
of a program’s runtime data) as code is edited [13], which enhances
understanding of how code changes affect the running system [32].
General tools like Projection Boxes [41] and Engraft [26] offer
configurable frameworks for live programming. Other tools focus
on specific programming tasks and can be categorized into three
types: generation, debugging, and validation.

Generation tools [15, 16] allow users to modify runtime values
to synthesize code. For instance, SnipPy [16] supports small-step
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program synthesis by changing the displayed runtime values. De-
bugging tools [32, 84] aid in program debugging by visualizing
runtime values. For example, OmniCode [32] displays the entire
history of all run-time values for all program variables all the time
when users are writing Python code. Validation tools [13, 82] en-
hance validation of AI-generated code by providing continuous
explanations adjacent to the code. For instance, Ivie [82] breaks
up complex code into pieces and annotates them with textual ex-
planations. These prior works have made efforts to improve code
understanding in programming, inspiring the design ofXavier. How-
ever, when users are editing code to apply a new transformation
on datasets, they typically focus on a relatively small portion of in-
formation in variables. For instance, while applying a string format
transformation like df["A"] = df["A"].str.replace(":", "") on
the variable “df” with many columns, users typically focus merely
on the value format of the column “A” in the variable “df”. Although
existing validation tools can effectively display the necessary in-
formation of variable states (e.g. all elements in an array), they
generally fail to link such a small portion of relevant information
required to validate the current code that users are authoring. Our
work offers a nuanced inspection by highlighting the relevant data
contexts and showing instant previews, which further enhances
live programming and code understanding.

3 PRELIMINARY STUDY
Before designing an AI-powered code assistant for data wrangling
scripts, we would like to understand the requirements and chal-
lenges the users maymeet. Prior work [2, 45, 54, 69, 73] has explored
patterns of user interactions with AI-powered code assistants in
general coding tasks and identified various challenges, such as code
understanding, verification, and context switching. These efforts
have pointed out the direction for improving AI-powered code assis-
tants and have inspired our research. Although the findings from
the existing work can be generalized to various domains, they do
not fully cover the problems users encounter when authoring data
wrangling scripts. Unlike tasks with clear objectives such as front-
end and back-end development or web scraping, data wrangling
tasks often involve a higher degree of uncertainty. Users need to
fully explore and understand the characteristics of the dataset [48]
and complete data transformation tasks iteratively through interact-
ing with data [12]. In order to understand the needs and challenges
users face when using AI-powered code assistants to complete data
wrangling tasks, we conducted a preliminary study1 where partici-
pants took part in: 1) an experiment, in which they were asked to
complete data wrangling tasks using GitHub Copilot [18], and 2)
a semi-structured interview, in which they shared the basic work-
flow of data wrangling and the issues encountered in the previous
experiment. We identified common patterns in users’ behavior and
summarized requirements according to the interview.

3.1 Participants
We recruited 9 data analysts (denoted as P1-P9, 5 male and 4 female,
𝐴𝑔𝑒𝑚𝑒𝑎𝑛 = 26.44, 𝐴𝑔𝑒𝑠𝑡𝑑 = 5.88, 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑚𝑒𝑎𝑛 = 5.00 𝑦𝑒𝑎𝑟𝑠 ,
𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑠𝑡𝑑 = 2.55 𝑦𝑒𝑎𝑟𝑠) by sending invitations via social me-
dia and word-of-mouth. They had diverse backgrounds such as
1The study has been approved by State Key Lab of CAD&CG, Zhejiang University.

Control Engineering, Mathematics, Digital Media Technology, Data
Governance, Geographic Information Systems and so on. They regu-
larly programmed with Python Pandas in computational notebooks
for data wrangling in their projects (at least once a week). Their
demographic information is detailed in supplemental materials.
Participants consented to having their voices and programming
processes recorded.

3.2 Apparatus and Materials
Apparatus.We chose GitHub Copilot [18], a representative of

AI-assisted code assistant, in our preliminary study. Copilot is the
first code assistant based on Large Language Models (LLMs) to
reach widespread usage and has been studied by a wide range of
literature [2, 13, 50]. Participants authored data wrangling code in
computational notebooks on standardized desktop devices. A slide
with task descriptions, output examples and data dictionaries was
prepared for users to refer to in the code authoring experiment.

Datasets.We selected Covid-19 dataset including 3 tables and
20 columns based on a publicly available notebook2. The dataset
was chosen for its public familiarity [68] and coverage of two ma-
jor types of tabular data, namely categorical and numerical. Data
tables were slightly modified such as changes of column names and
categorical values to ensure Copilot had not been trained on them.

Tasks. In our preliminary study, participants were asked to
author a data wrangling script to calculate the ratio of confirmed
cases and death cases for each country. They needed to complete
approximately 20 transformation operations, involving common
operations such as joining, sorting, and filtering, to produce an
output table that includes 7 columns. Details of task description are
left to the supplementary materials.

3.3 Procedure
We first informed participants about relevant information regarding
the study, including the purpose, overall procedure, and compen-
sation of the study, and then sought participants’ consent to data
collection. Then, the participants would take part in a code author-
ing experiment (60-75 minutes) and a semi-structured interview
(15 minutes). We captured participants’ behavior in coding process
through video recordings and collected feedback in the interview by
audio recordings for subsequent analysis and summarization. The
entire study took around 90 minutes and each participant received
70 Chinese Yuan as compensation.

Code authoring experiment. Initially, we briefly introduced
GitHub Copilot and allowed participants to try it on a warm-up
task, in order to ensure participants grasped its usage. Participants
were then given the task description, dataset and data dictionary
to write a script in a computational notebook with Copilot’s as-
sistance. Participants were free to consult the data dictionary or
view raw data tables as needed. Following the think-aloud protocol,
participants were encouraged to share their thoughts on Copilot
during the experiment.

Semi-structured interview. The semi-structured interview
consisted of three parts. In the initial part, we inquired of partici-
pants regarding their basic workflow of data wrangling in their data
analysis work. In the second part, participants were encouraged to
2https://www.kaggle.com/code/erikbruin/storytelling-covid-19

https://www.kaggle.com/code/erikbruin/storytelling-covid-19
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share the issues they encountered in the experiment, including the
difficulties in completing the task and the pain points of interacting
with Copilot. In the last part, we specifically asked participants
about the issues we observed in the experiment.

3.4 Findings
Wemanually captured participants’ behaviors in the code authoring
experiment through video recordings. To analyze the user feedback
from the semi-structured interview, we conducted a qualitative
inductive content analysis [38]. Initially, two co-authors (data anal-
ysis experience: ≥ 3 𝑦𝑒𝑎𝑟𝑠) read the recording transcripts to extract
the comments related to issues and difficulties individually. Then,
they grouped the similar comments and identified the challenges
collaboratively. Finally, all co-authors discussed the user behavior
and challenges to derive the key findings. In this subsection, we
first introduce the definition of two kinds of participants’ activities
observed in the code authoring experiment. Then we summarize
four findings according to user activities and feedback.

3.4.1 Definition of Two Kinds of Activities. We categorized the par-
ticipants’ behavior into two kinds of activities: Data Inspection
(DI) and Code Authoring (CA). DI involves examining datasets,
which can be further divided into two types: profiling (DI_1) and
verifying (DI_2). DI_1 is focused on understanding datasets and
gaining inspirations for subsequent wrangling steps, which can
manifest in multiple ways such as reading parts of the data ta-
ble. DI_2 is about verifying the effectiveness and correctness of
transformations, typically manifested as viewing the result table
after running the transformation code. CA involves writing code,
which can also be divided into creating (CA_1) and modifying
(CA_2). CA_1 is related to applying new transformations or profil-
ing datasets, while CA_2 involves minor code modifications, such
as adjusting function parameters, often seen in debugging. We
measured duration of activities for each participant and scaled the
duration of activities by normalizing each participant’s total time
spent on code authoring. The activity timelines of each participant
during code authoring experiment are shown in Figure 2.

3.4.2 User Behavior and Challenges. According to the user be-
havior and feedback, we summarized four findings:

Users frequently switched between code contexts and data contexts,
commonly fixing coding mistakes by checking data. According to
Figure 2 and our observations in the code authoring experiment,
participants frequently switched between DI_1 and CA_1 or be-
tweenDI_2 and CA_1, indicating frequent context switches during
the coding process. For instance, P1 encountered a relatively diffi-
cult subtask in the second half of code authoring experiment, and
he needed to write code (CA_1) and review the data (DI_1) iter-
atively to adjust his coding approach. Ideally, users who author
data wrangling scripts experience an iterative process involving
profiling, creating, and verifying steps, which typically follow the
cycle: DI_1, CA_1, DI_2, (DI_1), CA_1, DI_2,... However, the in-
terleaving of CA_2 and DI_2 is common in Figure 2, indicating
that participants often encountered errors and typically fixed mis-
takes by checking the result table. As a representative example,
P6 encountered an intractable bug in her script in the last third of

the experiment, having to repeatedly modify the code (CA_2) and
examine the result (DI_2).

Users complained about frequent mistakes brought by Copilot’s
code completion. When writing partial code and letting Copilot
complete it, doubts arose about its data knowledge. In Section 3.2,
all column names were changed (e.g. “ProvinceOrState” instead
of “Province/State”), yet Copilot often returned incorrect comple-
tions like “Province/State”. Such mistakes caused “non-exist col-
umn” errors which frustrated participants. “Why did Copilot still
complete ‘Province/State’ even if I explicitly mentioned the ‘Province-
OrState’ column in previous code?”, P8 questioned. When preferring
to write comments first for Copilot to generate code, participants
complained about lengthy prompts. P2, P4 and P9 admitted their
detailed dataset information in comments was mainly for Copilot,
which echoed previous research findings [2]. P2 doubted Copilot
would generate correct code without specifying operations and
operators. Nearly all participants suggested Copilot should access
data tables so as to correctly complete column names and values.
Users faced difficulties searching for the part of the data to which the
code completion tool was referring. Before applying a new transfor-
mation operation, Copilot recommended the next possible line of
code for participants. However, participants usually had no idea
about the part of the data Copilot was focusing on and they were
not sure about the relevance between the next-step recommenda-
tion and their current wrangling subtasks. Hence, they tended to
reject the recommendation and instead used various methods to
search datasets. For example, before unifying country names, par-
ticipants wrote additional code to filter relevant names (P1, P4 and
P6) or opened original CSV files (P2, P3, P5, P7 and P8) to search
globally (DI_1). However, they found it time-consuming to search,
as P2 commented, “I was overwhelming when searching for ‘United
States’ in the raw data file with so much irrelevant and interfering
information”. P5 noted, “It was troublesome writing code just to see
different spellings of United States, such as ‘US’ and ‘USA’.” Interrup-
tions in writing often occurred to observe intermediate variables
during transformations. For example, P1 printed columns of tables
covid_19_data and country_codes to recall the exact spelling of
key names while merging the two tables.

Users spent considerable time reviewing the transformation result
of AI-generated code. Due to frequent “non-exist column” errors,
participants remained skeptical especially about constants like col-
umn names or data values, requiring careful verification against
data. However, reviewing was sometimes inconvenient even when
running code. For instance, P6 spent about 10 minutes fixing a line
due to unawareness of a column’s data type and a hidden spelling
error. “I expected cardinality changes of the column after the string re-
placing transformation, but needed extra code to verify the prediction.”
P1’s comment indicated the challenge in tracking data changes, as
reported in [12, 74].

3.5 User Requirements
We identified three requirements for a code completion tool in
authoring data wrangling scripts according to findings. In the re-
maining part of the paper, R1-R3 refers to the requirements. The
requirements are:
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Figure 2: The timelines of observed activities of each participant during the code authoring experiment. DI and CA refer to Data
Inspection and Code Authoring, respectively. Users may profile data (DI_1), verify results (DI_2), create new transformations
(CA_1) or modify the written code (CA_2) during scripting. To facilitate comparison, we scaled the duration of activities by
normalizing each participant’s total time spent on code authoring.

R1. Incorporating data contexts for intelligent code com-
pletion. In our code authoring experiment, users were frustrated
at mistakes (e.g. non-exist columns) made by Copilot and had to
write lengthy prompts to transfer the dataset information to Copilot.
However, general code completion tools like Copilot typically lack
data contexts, which limits the intelligence of suggestions. Thus,
automatic data context provision can help alleviate the need to
manually convey data contexts to the code completion tool.

R2. Assisting users in locating relevant parts of datasets. In
our code authoring experiment, participants struggled to search for
relevant data to be wrangled and they had to frequently print tables
or refer to original CSV files, which caused a significant context-
switch overhead. Therefore, the tool should offer a straightforward
way to help users search for and focus on relevant data before they
start writing code to apply a new transformation.

R3. Offering straightforward code verification. In our code
authoring experiment, participants were confused by how Copilot
suggested code completion and took much effort in verifying cor-
rectness of Copilot’s suggestions, which also lowered the efficiency
of code authoring. Thus, the tool should also offer simple verifica-
tion approaches to assist users in validating AI-generated code and
enhance their trust.

4 XAVIER
In this section, we first present an overview of Xavier (Section 4.1).
This is followed by a detailed discussion of the design of Xavier,
which features data context-aware code completion (Section 4.2),
automatic data context highlighting (Section 4.3), and real-time
transformation preview (Section 4.4). Usage scenarios in Section 4.2,
4.3 and 4.4 are highlighted with a blue background .

4.1 Overview
Xavier is a coding assistance tool enabling users to stay aware of
data contexts while authoring data wrangling scripts. Integrated
as an extension for computational notebooks, it supports Python
Pandas [59], with the potential for generalization to other data
transformation libraries.

Figure 1 illustrates Xavier within the notebook interface. It con-
sists of two components: the notebook interface and an always-on
data view visualizing data contexts. In parallel to users’ writing
scripts in the notebook, a selection list (Figure 1 A) will appear,
providing completion suggestions for users. Meanwhile, the data
view (Figure 1 B) displays data contexts for user reference. Initially,
all active DataFrames in the notebook kernel are listed (Figure 1
B3). Expanding an item in the DataFrame list reveals the schema
(Figure 1 B2) with profiles such as data type, cardinality and value
range of each column, helping users rapidly recall the content of the
DataFrame. Clicking the “Show sample rows...” button displays the
first 15 rows (Figure 1 B1), aiding further understanding without re-
peatedly using additional code like df.head() to print DataFrames.
It also facilitates efficient verification of analysis results by automat-
ically highlighting and previewing real-time data contexts based on
the current partial code in the editor and the selected item in the
completion list. Since the visualization of data contexts may occupy
a significant amount of screen space, the data view is kept in a split
window on the right. This layout choice minimizes visual obstruc-
tion of the code editor and reduces repeatedly scrolling to view the
code. These components cover two major kinds of activities (i.e.
DI and CA) discussed in Section 3.4, keeping users aware of data
contexts throughout the coding process. To support the functionali-
ties of the interface, three computational components, namely code
context manager, data context manager and completion generator are
designed. Their relationship is shown in Figure 3. The code context
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Figure 3: The workflow of Xavier. The input of Xavier consists of code in the editor (A1) and DataFrames in the notebook
kernel (A2). The code is divided into the complete part and the incomplete part by the code context manager (B1) where the
incomplete code is further parsed. Data contexts for each DataFrame are pre-calculated in the data context manager (B2) since
the last run of code. The complete code, the parsing result and data contexts are transferred to completion generator (B3) for
data context-aware code suggestions (C1). Meanwhile, Xavier highlights the most relevant data based on user’s code and the
completion suggestions in the data view, previewing transformation results to facilitate code verification (C2).

manager (Figure 3 B1) splits the code in the current notebook (Fig-
ure 3 A1) into the complete part and incomplete part, parsing the
partial code near the input cursor. The parsing result serves as clues
to gather relevant data contexts for the subsequent workflow. The
data context manager (Figure 3 B2) computes data contexts for all
active DataFrames in the notebook kernel (Figure 3 A2). Both code
and data contexts are then transferred to the completion generator
(Figure 3 B3) which offers intelligent code completions (Figure 3 C1),
real-time highlighting and preview (Figure 3 C2) upon invocation.

Data contexts are integrated into the design of Xavier. Inspired
by a previous study [12], we categorize data contexts into three
types according to three different types of data objects [34]: tables,
rows and columns. Table-level data contexts contain basic informa-
tion of a data table, including the table name, column name and
shape. Column-level data contexts include detailed information of a
column. Common column-level data contexts are the data type, null
value count and sortedness. In addition to common column-level
contexts, categorical columns have unique values, value frequency,
cardinality and value format, while numerical columns have value
range, sample data points and value format. Row-level data contexts
include sample rows of a table, maintaining the spatial relationship
between table cells. Different data contexts can be combined and en-
hance functionalities in Xavier like code completion. For instance,
column names from table-level contexts and sample rows from
row-level contexts are both required for the table join operation to
complete parameters indicating the key columns. The same type
of data contexts of different data objects can also be combined. For
example, table-level data contexts from multiple tables are essential
for the table concatenation operation.

4.2 Data Context-Aware Code Completion

Assume that Sarah, a data journalist, planned to transform
a movie dataset into a table with movie titles, ratings and
duration to analyze the relationship between the favourable
rating and the duration of movies. After loading tables, Sarah
found that the information about favourable ratings and the

movie duration was not in the same DataFrame, so she de-
cided to join them first. As she wrote joined=movies.merge(
ratings , she forgot the exact spelling of the joined columns,
though she remembered that they were about movie titles.
Without manually searching column names in the “movies”
and “ratings” DataFrames, Xavier suggested the comple-
tion left_on="netflixTitle",right_on="title". Having a
glimpse of corresponding highlight on the data view, Sarah
found the code completion correct and immediately ac-
cepted the suggestion without typing verbose parameters.

Xavier incorporates both code contexts and data contexts to pro-
vide data context-aware code completion during typing (R1). The
functionality is implemented by a completion generator (Figure 3
B3) which organizes code contexts from the code context manager
(Figure 3 B1) and data contexts from the data context manager
(Figure 3 B2) to compute completion results. The workflow con-
sists of three steps, namely code context detection, data context
organization, and code completion generation.

4.2.1 Code context detection. Leveraging the principles of lexical
and syntax analysis [1], the code context manager (Figure 3 B1)
detects the cursor position in the incomplete Python statement to
determine missing parts of code. A set of configurable and extensi-
ble rules is manually constructed based on the Python grammar [17].
In the first step, the code context manager determines whether the
user’s input cursor is currently positioned within the signature
of a Pandas function (e.g. pd.merge(df1, df2, left_on="col1" )
or out of the signature (e.g. df[df["A"] ). If the cursor is in a
signature, the manager records the signature name and identi-
fies missing parameters in the partial code. For example, in the
partial code pd.merge(df1, df2, left_on="col1" , the signature
name is “merge” and the filled parameters are the left table “df1”,
the right table “df2” and the joined column “col1” in the left ta-
ble. This indicates that a corresponding joined column name in
the right table is required. If the cursor is out of the signature,
the manager analyzes patterns of Abstract Syntax Trees (ASTs)
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Figure 4: The usage scenario of automatic data context highlighting. A) Xavier detected the existing DataFrame “joined” and
showed the corresponding schema. B) When Sarah was selecting the suggested column names for the partial code (B1), Xavier
displayed sample rows of the DataFrame “joined” and highlighted relevant columns based on Sarah’s code and the selected
suggestion (B2). C) Finally, Sarah selected three columns which were highlighted by Xavier.

A
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Figure 5: The usage scenario of real-time transformation preview. When Sarah switched to a completion item about column
format transformation (A), Xavier automatically computed the transformation result and added a preview column (B2) to the
right of the original column (B1), with bold text in changed table cells.

to identify possible transformation operators and missing AST
nodes. For instance, in the partial code df[df["A"] , the manager
identifies it as a filtering operation according to the AST pattern
df[ . Based on the basic format of a filtering condition, at least
an operator and corresponding parameters like == "Value" are
required to complete the transformation. To ensure generalizabil-
ity, the code context manager matches AST patterns from child

nodes up to parent nodes. Hence, for nested transformations like
pd.merge(df1, df2[df2["A"] , only the filtering transformation
df2[df2["A"] will be considered. Likewise, for chained transfor-
mations like df1["A"].fillna("Unknown").str.replace( , only the
string replacement transformation function replace( will be taken
into account. These code contexts will be utilized to determine the
timing for triggering each category of code completion suggestions
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(see Table 1 and Table 2 in the appendix) and to inform the content
of those suggestions.

4.2.2 Data context organization. As discussed in Section 4.1, three
types of data contexts in the data contextmanager (Figure 3 B2) have
been pre-calculated since the last run and will be sent to the com-
pletion generator (Figure 3 B3) as the code completion is triggered.
To save the computation cost and offer more targeted completions,
the data contexts will be further filtered in two steps, namely type
matching by operators and context selection by operands.

In type matching, data context types are determined based on
transformation types classified in Pandas documentation [72]. This
step excludes data context types that have weak relevance to the
transformation. Since “DataFrame” and “Series” cover most of com-
monly used operators in Pandas, we classify all operators into
three types: “DataFrame”, “Series”, and “Others”. “DataFrame” op-
erators primarily rely on the table-level data contexts, with row-
level and column-level data contexts as additional references. For
instance, column names and sample values can provide useful
clues to complete a joined table country_code and joined columns
left_on="Country", right_on="Countryname" in the partial code
df3 = covid_data.merge( . For “Series” operators, only column-
level data contexts are selected, since “Series” operators focus
on single or multiple columns in a table. For example, the format
of values in the Series df["Country"] is an essential clue to com-
pleting substrings to be replaced in df["Country"].str.replace( .
For “Others” operators, the data contexts considered are default to
table-level data contexts.

In context selection, data contexts of specific tables or columns
are determined by missing parts of code detected in Section 4.2.1.
This step further excludes weakly relevant data contexts from other
tables or columns. For instance, in the partial code of a table filtering
operation df[ , row-level data contexts like sample rows of “df”
are taken into account as a supplementary clue in addition to table-
level data contexts, since the filtering condition is totally unknown.
However, when completing the partial code df[df["A"] , column-
level data contexts, such as sample values of column “A”, will take
precedence over row-level data contexts, as the filtering condition
is likely related to column “A”. As a result, within the same operator,
the required data contexts will be dynamically adjusted according
to the missing parts of the code, retaining only the most relevant
data contexts to provide targeted code completion (see Table 1 and
Table 2 in the appendix for details). Since the amount of filtered data
contexts can be potentially large (e.g. unique values of primary key
columns), the data context manager randomly samples values to
control the size of data contexts. To reduce the sampling limitation,
the data context manager also supports filtering data values by
prefix, saving the effort of manually adding information about
data values into comments before generating code. For instance,
although at most 50 unique values are sampled for the “unique
values” data context of a categorical column, users can still specify
data values by typing the prefix of values.

4.2.3 Code completion generation. With the code context detected
and data context organized, Xavier combines both to offer recom-
mendations for subsequent code through the completion generator

(Figure 3 B3), supporting both single-token and multi-token com-
pletion. The single-token completion works like traditional code
completion by completing the rest of a token based on its prefix, but
it provides more comprehensive column name completions since
writing column names is common in data wrangling scripts. For
instance, for the partial code df.sort_values(by="C , all column
names starting with “C” in table “df” will be listed as suggestions.
The multi-token completion leverages the capabilities of Llama3-
70B [51], an open-source LLM with outstanding performance in
various general tasks. Inspired by the prompt structure proposed
in [28], we design a prompt template consisting of four components:
code context, data context, task instruction and format control. The
code context refers to all data wrangling code preceding the cursor.
The data context is the textual representation of the organized data
contexts discussed in Section 4.2.2. Column-level data contexts are
grouped by columns, while table-level and row-level data contexts
are grouped by tables. The task instruction includes the thinking
steps to help derive the appropriate completions. Format control is
employed to restrict the output format, increasing the likelihood
of obtaining syntactically correct answers. Note that the prompt
template is merely one of the feasible solutions to combining code
and data contexts to offer data context-aware code completion. We
encourage future researchers to explore alternative solutions.

4.3 Automatic Data Context Highlighting

Afterwriting the code to join tables, Sarah ran it to compute the
joinedDataFrame. Xavier detected the change of the notebook
memory and added profiles of the joinedDataFrame to the data
view with schemas automatically displayed, saving the need
to manually write code to print the result DataFrame. Glanc-
ing at the schema, Sarah found that the joined DataFrame
included 14 columns, with too many unrelated ones (Figure 4
A). She decided to select the related ones first for convenience
of subsequent wrangling.

As she wrote joined2=joined , Xavier folded the schemas of
other tables, making her focus on the current table (Figure 4
A). While selecting the suggested column names for the par-
tial code like joined2 = joined[["netflixTitle" (Figure 4 B1),
Xavier showed sample rows of the DataFrame “joined” and
highlighted columns mentioned in the partial code (i.e. the
column “netflixTitle”) as well as the currently focused com-
pletion item “durationOfTime”, as is shown in Figure 4 B2.
Since the data view had limited width and could not display all
columns of the DataFrame at the same time, Xavier anchored
invisible highlighted columns (i.e. “durationOfTime” in Fig-
ure 4 B2) for Sarah to reference. This feature allowed her to
review the selected columns while switching among differ-
ent completion items, ensuring that these columns were what
she wanted. Finally, Sarah typed the code joined2 = joined[

["netflixTitle","durationOfTime","nf_type"]] (Figure 4 C)
and executed it with confidence.

In order to help users rapidly locate relevant parts of datasets
(R2), Xavier automatically unfolds profiles of the corresponding
DataFrames and highlights columns in the side panel when users
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Figure 6: Three preview forms of Xavier. A) For the column format transformation, a new column is created to the right of
the original column. B) For the table filtering transformation, rows to be deleted are highlighted. C) For transformations that
generate a new table or change the whole table (e.g. Sort movies by total votes. For movies having equal total votes, sort them
by country names), both the original table and the result table are displayed.

are typing code or switching between different completion items.
Xavier detects table and column names mentioned in the partial
code as well as those in the currently focused completion item.
When the partial code and completion item only contain table
names,Xavier simply displays the schema of each table, with sample
rows concealed. For example, when users are filling in the table
names in a union transformation, such as pd.concat([df1 , and
the currently focused completion item is df2, df3] , the schemas
of tables “df1”, “df2”, and “df3” will be automatically presented in
the side panel, while other previously unfolded table profiles are
collapsed. When column names are also present, sample rows of
tables will be shown and the mentioned columns will be highlighted.
For instance, as users are selecting columns of a table through
df[["col1", "col2", and the currently focused completion item is
"col3" , all three columns (“col1”, “col2” and “col3”) will be marked
using a different background color in the sample rows. Since the
width of the side panel is limited and cannot simultaneously display
all columns in a table, Xavier adopts a floating effect to anchor
highlighted columns to the right side of the data view. Therefore,
users do not have to frequently scroll horizontally across the sample
row view to find all highlighted columns. Automatic data context
highlight helps users rapidly recall tables or columns of interest,
keeping users aware of data contexts in the current transformation
although the code is not necessarily complete.

4.4 Real-time Transformation Preview

Having selected relevant columns and obtained a new
DataFrame joined2, Sarah wanted to standardize the format
of the “durationOfTime” column in order to better analyze the
relationship between the favourable rating and the duration of
movies. When she wrote joined2["durationOfTime"]=joined2

["durationOfTime"], Xavier suggested multiple wrangling op-
erations, including .str.replace("minutes", "") (Figure 5 A).
Not sure about the effect of the operation, Sarah switched to
the completion item and checked the preview in the data view.
She found that a new column marked in yellow (Figure 5 B2)

was positioned beside the “durationOfTime” column (Fig-
ure 5 B1), showing the changes with bold text in modified
table cells. Sarah immediately verified the suggestion and
accepted it to standardize the column format with ease.

In order to facilitate understanding and straightforward verifi-
cation of code completions (R3), Xavier provides preview in the
data view for users to immediately examine the transformation
results when required parameters for an operation are all filled,
without explicit code execution by users. Inspired by Wrangler [31],
Xavier supports three types of previews, as is shown in Figure 6.
For column format transformation like substring replacement and
null value filling, a new column marked in yellow is created to the
right of the original column, with bold text indicating the changed
cells (Figure 6 A). For table filtering transformation, deleted rows
are marked in red, with bold text of filtering values mentioned in
user’s code (Figure 6 B). For transformations that generate a new
result table or change the whole original table like table sorting,
aggregation and merging, Xavier displays both the original table
and the new table (Figure 6 C). The preview visualization is similar
to the design of TweakIt [39], although Xavier’s preview is intended
for comprehending AI-generated code completions instead of pre-
existing code snippets.

5 USER STUDY
To evaluate the effectiveness and usability of Xavier, we conducted
a comparative user study3 in which participants were asked to
complete data wrangling tasks using Xavier and a baseline tool.
The setup of our user study is delineated in Sections 5.1-5.3 and the
results are reported in Section 5.4.

5.1 Participants
In our user study, 16 data analysts (denoted as U1-U16, 11 male
and 5 female, 𝐴𝑔𝑒𝑚𝑒𝑎𝑛 = 23.94, 𝐴𝑔𝑒𝑠𝑡𝑑 = 1.69, 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑚𝑒𝑎𝑛 =

3.06 𝑦𝑒𝑎𝑟𝑠 , 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑠𝑡𝑑 = 1.77 𝑦𝑒𝑎𝑟𝑠) were recruited from a uni-
versity through social media and word-of-mouth. This was a com-
pletely fresh sample with no overlap between participants in this
3The user study has been approved by State Key Lab of CAD&CG, Zhejiang University.
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study and those involved in the preliminary study. They had diverse
backgrounds including Software Engineering, Energy, Management
Science and Engineering, Data Visualization, Physical Education
and Training, and Computer Science. They all had programming
experience in data wrangling ranging from one year to six years
and regularly used Python Pandas in computational notebooks.
Participants consented to having their voices and programming
processes recorded.

5.2 Apparatus and Materials
Apparatus. The baseline tool we constructed was different from

Xavier in two aspects: code completion and visualization view. For
code completion, the baseline tool used the same backend LLM as
that of Xavier, while data contexts were removed from the prompt
to compare the effectiveness of data contexts in code suggestions.
We chose Llama3-70B [51], an exemplary publicly-available LLM
as the underlying model for both the baseline tool and Xavier, due
to its relatively low latency in local deployment. For the fairness
of tool comparison, the side panel view of AutoProfiler [12], a
continuous data profiling tool in recent literature, was replicated
for the visualization view. Similar to Section 3.2, we also prepared a
slide with task descriptions and data dictionaries. In order to control
the standardization of participants’ data transformation scripts and
simultaneously reduce the cost of participants referring to APIs,
we prepared a cheatsheet for them. Inspired by [49], the cheatsheet
listed supported transformations by Xavier and corresponding API
usage, categorizing APIs by functionality.

Datasets. We crafted two datasets, denoted as Covid-19 and
Movies dataset from two notebooks4 on Kaggle. We chose these
notebooks since participants are generally familiar with the back-
ground of datasets [68] and typically do not spend much time un-
derstanding the data. The crafted datasets still covered two major
types of tabular data (i.e. categorical and numerical). For the similar
reason discussed in Section 3.2, data tables were slightly modified.

Tasks. We designed a data wrangling task for each dataset in a
similar way to that described in Section 3.2. To avoid users being
distracted by too much irrelevant data and spending much time
exploring the dataset, we controlled the number of tables, columns,
types of data transformation operators, and the number of data
transformation steps involved in both tasks. For each dataset, we
only selected 3 tables and 20 columns relevant to the corresponding
task. In making these selections, we sought to preserve the logical
and semantic relationships within the original dataset as much as
possible, such as retaining primary and foreign key relationships.
This ensures that participants can complete the tasks using only
the provided data without requiring additional information. Both
tasks share the same set of data transformation operators. Each task
contains approximately 10 lines of code. For each task, participants
were asked to construct a table with 4 attributes. In the remaining
part of Section 5, Movie Task refers to the data wrangling task on
Movies dataset, and Covid Task refers to the one on Covid-19 dataset.
Task details are left to the supplementary materials.

4https://www.kaggle.com/code/erikbruin/storytelling-covid-19 and https://www.
kaggle.com/code/niharika41298/netflix-visualizations-recommendation-eda
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Figure 7: The perceived workload of participants using the
baseline tool and Xavier.

5.3 Procedure
We opted for a counterbalanced mixed design to compare Xavier
and the baseline tool. We denote the two systems as 𝑋 (avier) and
𝐵(aseline) and the two datasets as 𝑀(ovies) and 𝐶(ovid-19). The
participants were divided into groups of four. In each group, the
participants covered the following four experimental conditions:
[𝑀𝐵,𝐶𝑋 ], [𝑀𝑋,𝐶𝐵], [𝐶𝐵,𝑀𝑋 ], [𝐶𝑋,𝑀𝐵]. Such approach allowed
each participant to experience both tools and reduced potential
impact on experiment data brought by the sequence of tool using
and tasks like learning effect.

Like Section 3.3, we informed participants about relevant infor-
mation, conducted a code authoring experiment (50-60 minutes)
and a semi-structured interview (10-15 minutes), and collected data
from recordings. The entire study took around 75 minutes and each
participant received 70 Chinese Yuan as compensation.

Code authoring experiment. Similar to Section 3.3, we ini-
tially introduced the tool before each task and allowed participants
to try it on a warm-up task. To verify whether introducing data
context can improve code completion and enhance user experi-
ence, we did not inform participants in advance about how these
two tools worked. When participants were ready, they started to
author data wrangling scripts assisted by Xavier or the baseline
tool. Participants were permitted to consult the cheatsheet, the data
dictionary and the task description at any time during authoring.
After the experiment, they were asked to finish a questionnaire
which assessed their perceived workload.

Semi-structured interview. Three parts consisted of the semi-
structured interview. Initially, we asked participants to compare
the effect of code completion between the two tools corresponding
to R1 in Section 3.5. Then, participants compared and discussed the
coding assistance brought by the side panel, which corresponds to
R2 and R3. In the last part, we asked questions specifically target-
ing the issues observed during the experiment. The questionnaire
included six NASA-TLX [22] questions to measure the perceived
workload of participants when using Baseline and Xavier. All ques-
tions were measured using the 7-point Likert Scale.

5.4 Results
5.4.1 Quantitative Results. We collected and summarized the ques-
tionnaire results shown in Figure 7. On average, participants per-
ceived relatively lower workload when using Xavier compared to
that of the baseline tool regarding six aspects (mental demand, phys-
ical demand, temporal demand, performance, effort and frustration),

https://www.kaggle.com/code/erikbruin/storytelling-covid-19
https://www.kaggle.com/code/niharika41298/netflix-visualizations-recommendation-eda
https://www.kaggle.com/code/niharika41298/netflix-visualizations-recommendation-eda
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Figure 8: Quantitative results of our user study. We recorded
task completion time in seconds, context switches and errors
of participants by using the baseline tool and Xavier.

which suggests that the data context-aware design of Xavier has
the potential to reduce workload in code authoring.

To figure out whether Xavier accelerated the coding process, we
measured “task completion time” of each participant for each task.
To assess whether Xavier facilitated locating and understanding
relevant data (R2 andR3), we defined “context switches” to estimate
the additional overhead of authoring data wrangling scripts. A
context switch starts when users pause writing data wrangling
scripts, duringwhich users maymanipulate the side panel bymouse,
manually add code to profile the data, or leave the current editor
window to review the original data tables. The context switch
ends when users return to the editor and continue writing the
wrangling scripts. To evaluate the suggestion correctness of Xavier,
we defined “errors” to measure the errors users encountered in the
code authoring experiment. The errors include code errors related
to language grammar and data errors like accessing non-existent
columns, unexpected transformation results and so on.

Since the raw data of these measurements did not obey either
normal distribution or equal variance, we used the Scheirer-Ray-
Hare test, a nonparametric substitute for ANOVA, for statistical
tests. We tested the main effects of tools and tasks, as well as their
interaction effects. We found that for all three measurements, the
interaction effects and the main effects of tasks are not significant.
For task completion time, the main effect of tools is not significant.
However, for context switches and errors, the main effect of tools
is significant (both 𝑝 < 0.001). Considering that the interaction
effects and the main effects of tool are not significant, we reported
the means of task completion time, context switches, and errors
of different tools, as shown in Figure 8. There are fewer context
switches and errors when users using Xavier, which indicates that
participants likely concentrated on data wrangling code authoring
more easily and wrote data wrangling code with more accuracy
with Xavier. However, we did not find a significant main effect of
tools on task completion time. One of the possible reasons is that
the task design is relatively simple (around 10 lines of code for each
task) given the limited experimental duration. Hence, long-term

evaluation of the task completion time by using Xavier is required
in the future work.

5.4.2 Qualitative Results. To analyze the user feedback from the in-
terview, we conducted a qualitative inductive content analysis [38].
We focused on three aspects: 1) how the participants compared
and evaluated the two tools; 2) the comments of the participants
on Xavier ; 3) the issues they encountered when using Xavier and
their suggestions for improvement. In the open coding phase, two
co-authors (data analysis experience: ≥ 3 𝑦𝑒𝑎𝑟𝑠) read the recording
transcripts and labeled the interview feedback individually. Then
they collaboratively resolved disagreements through periodic meet-
ings where the coders discussed the labeled content and reconciled
differences in interpretation. Furthermore, they grouped the similar
comments into higher-level themes. Finally, an additional co-author
(data analysis experience: > 5 𝑦𝑒𝑎𝑟𝑠) was involved to derive the
consensus on the key findings, which are as follows:

User experience. Most participants (14/16) thought that
Xavier’s code completions were “better”. Some participants even
described the code completions ofXavier as “amazing” (U4), “useful”
(U1, U6), or “smart” (U5). Similarly, most participants (14/16) men-
tioned the benefits of the automatic preview of Xavier, thinking that
it is “helpful” (U1, U3, U12) and it can help them “avoid errors” (U5,
U8, U14). The third feature of Xavier frequently mentioned by par-
ticipants is automatic highlighting (13/16). Participants described
the automatic highlighting as “intuitive” (U11, U15) and “convenient”
(U3, U5, U14). As the live data view kept changing while coding, we
additionally asked participants if they were distracted by frequent
changes. However, none of the participants found it distracting. We
identified two primary reasons from their responses. First, their
attention primarily remained on the code editor during typing and
they only saw the live data view when necessary (U2-U4, U6, U10,
U11, U13, U16). Second, real-time updates of the live data view can
bring them confidence (U1, U3, U8, U15). For example, “If it (the live
data view) doesn’t change, I will worry if I have written something
wrong”, U8 noted.

Code completion preferences. Participants seemed to prefer
shorter code completions rather than longer ones. According to
the participants’ feedback, they preferred completions like column
names (U1-U5, U8, U11, U13-U16), data values (U3, U16) and pa-
rameters (U8, U13, U14), rather than completions like the whole
transformation statement. We identified two primary reasons for
the preference of shorter code completions. First, longer comple-
tions typically required more time to generate (U2, U6, U12). For
instance, U6 skipped most of the completions (8/10) of the whole
statement after the assignment operator. As she pointed out, “It
(the code completion of Xavier) came out a little slower than I thought,
making me hesitate whether to type it myself or wait for it to appear”.
Second, participants believed longer completions would be less
accurate (U12-U15). As U14 commented, “If it (Xavier) could really
guess what I’m thinking and provide longer completions, that would
be the best. But I probably don’t have such expectations because I
think it’s very difficult to achieve.”

Transparency and trust. As previously discussed, the pre-
view and highlight features of Xavier may help users more eas-
ily validate the completions and enhance their confidence in the
tool. However, these features cannot fully address the issues of
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transparency and trust. One issue is that the model mechanisms
behind completion are not transparent. Specifically, U4, U6, U15
and U16 were curious about how the code completion is recom-
mended. For instance, U4 was surprised by the accuracy of the
completion df["ConfirmedCases"] / df["pop_20"] for the partial
code df["casesPer"] = , which was exactly what he wanted. “How
did it (Xavier) know the meaning of ‘pop_20’ is the population in
2020? Is there some information to tell it (Xavier)?”, U4 asked. We
also noticed that initial few code completions may influence par-
ticipants’ trust in its capabilities (U8, U11, U13, U15). For instance,
during the code authoring experiment, U15 initially waited for the
completion of the whole filtering transformation when she typed
selected = , but did not receive a correct response. Eventually,
she skipped most of the completions of this kind (6/7) and only
waited for shorter ones as she specified the transformation operator.
“Sometimes it (Xavier) completed a long line for me... I would not trust
such completions”, she said in the interview.

6 DISCUSSION
This paper presents Xavier, a tool designed to enhance data
wrangling script authoring in computational notebooks. The user
study revealed that users encountered significantly fewer context
switches and errors during scripting by using Xavier (Section 5.4.1).
User feedback indicated that Xavier could help validate code and
bring confidence to users (Section 5.4.2). In this section, we discuss
the lessons learned from the development and evaluation of Xavier
in Section 6.1. Besides, we identify limitations of our research that
can be further improved in Section 6.2.

6.1 Lessons Learned
Throughout the development and the evaluation of Xavier, we have
gained valuable insights and lessons:

Presenting contexts to users in an always-on side panel
makes users context-aware while minimizes excessive inter-
ruptions. Prior work [50, 77, 78] has extensively discussed the user
interface design of code assistants in computational notebooks. For
instance, the display style can be on-demand for situational con-
texts or always-on for continuous contexts [77]. Since DI and CA
are interleaved from our observation in the preliminary study (Sec-
tion 3.4) and it is uncertain when users need to view data contexts,
adopting the always-on display style is a suitable design to facilitate
users to remain aware of data contexts in authoring data wrangling
scripts. In comparison to displaying contexts inline, placing con-
texts in the side panel may help reduce disturbance while users are
authoring code. Previous code assistants like Notable [42] and Auto-
Profiler [12] adopt a similar design to reduce context switches while
maintaining awareness of specific contexts like data facts or data
profiles. In our user study, with the always-on display, participants
could refer to the highlighted data and the preview result at any
time, with less context switch overhead. Although the highlighted
area kept changing, participants did not think the frequent change
of the data view scattered their attention since they focused on the
code editor while coding, which may suggest the feasibility of the
always-on side panel design.

Controlling the length of code completions can improve
user experience. According to Section 5.4.2, many participants

preferred shorter completions. One of the reasons is that they be-
lieved longer completions were less accurate. Another potential
reason is that when completions did not exactly follow users’ intent
(e.g., Xavier “might suggest variations of a function”), shorter comple-
tions can be more easily understood and verified. Given the current
limitations in model performance, it is necessary to introduce new
methods to control the generation of shorter completions, making it
easier for users to verify and accept the suggestions. However, cur-
rent suggestions on shorter completions could be only an interim
solution. To better meet user expectations, it would be beneficial to
delve into research on models with higher performance in longer
completions. Meanwhile, it would be worthwhile for follow-up
studies to develop new methods that not only foster user trust but
also help assess the performance of models.

Improving model transparency facilitates evaluating the
capability of code completion. Currently, Xavier incorporates
preview and highlight features to assist users in validating AI-
generated code completions. However, according to Section 5.4.2,
these features cannot fully address the issues of transparency and
trust, making participants unclear about the model’s capabilities
in code completion. We suggest two possible reasons for the is-
sues. First, to offer straightforward code verification and mitigate
information overwhelming, Xavier did not provide explanations
on what contexts were selected to complete the code. Hence, some
participants (U4, U6, U15, U16) were curious about how the code
completion worked in the user study interview. Second, users do
not have a clear understanding of the performance of LLMs. There-
fore, initial few code completions may influence participants’ trust
in capabilities of the tool (U8, U11, U13, U15). To further address the
transparency and trust issue, future improvements to the design
of Xavier could include presenting the contexts used for code com-
pletion to users on demand. Additionally, quantitatively evaluating
the model’s performance and informing users about the model ac-
curacy will also help them better understand the capabilities of the
code completion tool.

6.2 Limitations and Future Work
The limitations of our research can be observed in two main aspects:
the functionalities and the evaluations of Xavier.

6.2.1 Functionalities. The functionalities of Xavier can be further
improved from the three aspects: Data context sampling. To
offer data context-aware code completions, Xavier selects relevant
data contexts according to the partial code being edited. According
to Section 4.2.2, if the amount of data contexts is large, only a
sample will be collected to compute the code completions due to
the limitation of LLMs. During the development of Xavier, we have
attempted to improve the performance of code completions by
adjusting different sampling sizes for data contexts, such as the
different maximum number of unique values. However, due to the
lack of benchmarks, it remains unclear what the optimal amount of
data contexts is, necessitating future experiments for verification.

Response speed. While using Xavier for code authoring, users
may experience delays in completion responses due to network
latency, as Xavier frequently sends requests to the LLM behind
the scene. Another reason for response delay is the relatively high
computation cost, since Xavier combines both code contexts and
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data contexts to generate intelligent code suggestions. However,
response time is also an essential factor affecting the user experi-
ence of code completion tools [76]. We encourage future work to
optimize the usage of both code contexts and data contexts to save
the computation cost and improve response speed.

Supported libraries. Xavier uses Pandas as an exemplary data
transformation library to offer data context-aware coding assis-
tance. To provide intelligent code completions, highlight relevant
data and preview the result, Xavier needs to parse the structure of
Python Pandas code. The parsing rules need adjustment for gener-
alization to other programming languages and data transformation
libraries. Future work can explore a unified way like construct-
ing intermediate domain specific language to adapt to different
programming languages and libraries.

6.2.2 Evaluations. To assess whether Xavier facilitated locating
and understanding relevant data, we defined a metric called “con-
text switches” in Section 5.4.1 to estimate the additional overhead of
authoring data wrangling scripts. These “context switches” assume
that users pause typing data wrangling scripts while users are man-
ually profiling datasets. However, this metric may not sufficiently
capture attention shifts of users (e.g. users might simultaneously ob-
serve the live data view and type). As suggested by an anonymous
reviewer, an interesting follow-up study could involve eye-tracking
to understand how the live data view supports on-the-fly validation
of code suggestions and how frequently users shift their attention
between the code editor and live data view. Such a study could
provide deeper insights to further optimize the design of Xavier
and better evaluate the tool’s effectiveness.

7 CONCLUSION
During data wrangling code authoring, users have to constantly
locate and understand relevant data while writing custom scripts.
In this paper, we propose a novel coding assistance approach that
prioritizes data contexts and allows users to remain aware of data
contexts. We first conducted a preliminary study to identify com-
mon patterns from a code authoring experiment, deriving three
user requirements according to the semi-structured interview. Then
based on the requirements, we propose Xavier, a computational
notebook extension designed to enhance data wrangling script au-
thoring. Xavier integrates both code and data contexts for data
context-aware code completion, automatically highlights the most
relevant data and instantly previews data transformation results
based on the user’s code. Xavier was overall appreciated by data an-
alysts in the user study with 16 data analysts. The coding assistance
of data context awareness has the potential to be generalized to
other data wrangling libraries and programming languages. Further-
more, a long-term evaluation based on real-world datasets deserves
exploration in the future work.
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