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Fig. 1: Diagram for Transformer layer

A RESEARCH BACKGROUND
A.1 Details of the Knowledge Editing Method

Background. As is known to all, an MLP layer consists of a first linear
transformation (input weight W;,,), a non-linear activation function, and
a second linear transformation (output weight Wp,,;).

To help readers understand the core mechanisms of knowledge edit-
ing, we briefly introduce the algorithmic principles using MEMIT, a
mainstream algorithm, as an example.

MEMIT is an algorithm for editing factual knowledge in large lan-
guage models by directly modifying specific transformer layer parame-
ters. At its core, MEMIT first identifies a range of critical MLP layers
that mediate factual recall through causal analysis. For the same LLM,
the range of selected MLP layers is fixed. Afterward, for each fact i
to be edited, it computes a target hidden state vector (z;) that would
correctly encode the new association. Then, MEMIT distributes the
necessary changes across multiple layers by treating each MLP layer as
an associative memory that maps subject representations to fact-related
information. The key innovation is calculating optimal weight updates
(update on W, as shown in Figure 1) that minimize disruption to
existing knowledge while effectively storing new memories. This is
achieved by solving a mathematical optimization problem that balances
preserving old associations with learning new ones, using statistics
from the model’s previous inputs to ensure changes are minimal yet
effective. Actually, in the above process, the only part of the model that
is modified is the output weight W,,,; of the selected MLP layers.

A.2 Example for Evaluation Metrics

In order to help readers better understand the evaluation metrics, we
give an example.

Suppose the LLM lacks knowledge about Messi’s transfer from
Paris Saint-Germain to Inter Miami CF. To address this, we utilize the
statement "The football club Messi currently plays for is Inter Miami
CF" as the edited fact to perform knowledge editing. Table 1 shows
examples of test prompts for evaluating these five metrics, with one
example provided for each metric.

Table 1: Examples of testing prompts for different metrics

Metrics Testing Example

ES The football club Messi currently plays
for is

PS Messi’s current employer in the football
world is

NS Which football club has Ronaldo on its
roster? The answer is

GE List the information of the club that
Messi is currently playing for.

RS

B KEDITVIS
B.1 Knowledge Graph

The implementation of knowledge graphs follows a three-step pipeline:
first, we retrieve and pre-process relevant Wikipedia content for the
user-selected word; second, we apply GPT-4 API for semantic parsing
to extract subject-predicate-object triples; and finally, we construct
a knowledge graph with the user-selected word as the central node,
limited to a two-hop neighborhood. This approach balances information
density with relevance, allowing dynamic exploration of any keyword
without pre-built databases.

B.2 Visualization Algorithm for Wireframe Layout

We designed a three-step visualization algorithm that determines each
wireframe’s horizontal length and its connection point on the layer
rectangle. The following is a textual description of the algorithm.
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Fig. 2: Set Visualization: (A) Diagram of set visualization our designed;
(B) The curved edge band solution we tried.

* Step 1. We generate a sorted list of layer selection schemes from
smallest to largest range, with identical ranges sorted by layer
values.

» Step 2. We traverse each scheme based on the sorting from
step 1. During traversal, we calculate division points needed
for each layer rectangle’s right edge and determine wireframe
horizontal lengths. The calculation of the horizontal length of
each wireframe: Starting with unit length x, we check if there
are any existing wireframes (i.e., wireframes that have already
been traversed and whose lengths have been calculated) that have
the same length and overlapping layer ranges. If found, the
length increases by x; otherwise, it’s confirmed. This approach
minimizes distinct horizontal wireframe lengths.

» Step 3. We traverse each layer to determine wireframe connection
points. When traversing layer n, we analyze the other number
in schemes containing n. Connection points for numbers greater
than n are placed below those for numbers less than n, with
larger numbers connecting progressively higher. Take layer 6 in
Figure 2A) as an example: when we traverse to layer 6, there
are five schemes that include 6 at either end: 2-6, 4-6, 6-8, 6-
10, and 6-12. We then examine the other number in each of
these schemes (besides 6) to determine positioning. First, the
connection points for schemes 2-6 and 4-6 must be placed above
the schemes 6-8, 6-10, and 6-12 (because 2 and 4 are less than
6, while 8, 10, and 12 are greater than 6). Within each group,
we ensure that schemes with larger numbers have connection
points positioned higher (so the connection point for scheme 4-6
is positioned higher than scheme 2-6, and the connection point
for scheme 6-12 is positioned higher than scheme 6-10).



After executing the above algorithm, the section to the left of the
dashed line x; (see Figure 2A) is effectively optimized. For the section
between the dashed lines x| and x;, we only need to sort the layer
selection schemes according to the order of the intersection points
between the wireframes and x| when the user clicks the sort icon (the
sort icon is positioned above the layer selection schemes). This ensures
that there are no crossing points between x| and x,.

The following is the visualization algorithm’s pseudocode and time
complexity analysis.

Algorithm 1 Visualization Algorithm for Wireframe Layout

Input: Set of layer selection schemes S = {(/;,u;)} where /; and
u; are lower and upper bounds
Output: Wireframe horizontal lengths and connection points
Step 1: Sort schemes
1: Sort schemes in S by range size (u; — /;) ascending, then by layer
values (/;,u;) ascending
2: sorted_schemes < sorted list of schemes
Step 2: Calculate wireframe horizontal lengths
: X < unit length
: wireframe_lengths < {}
: for each scheme (/,u) in sorted_schemes do
current_length < x
while exists wireframe with length current_length and overlap-
ping layer range do
8: current_length < current_length+ x
9:  end while
10:  wireframe_lengths|[(l,u)] + current_length
11: end for
Step 3: Determine connection points for each layer
12: connection_points < {}
13: for each layer n from 0 to max_layer do
14: schemes_containing_n <— schemes where [ =noru=n
15:  other_numbers < {}
16:  for each scheme (I,u) in schemes_containing_n do
17: if / = n then

18: add u to other_numbers

19: else

20: add [ to other_numbers

21: end if

22: end for

23: numbers_less_than_n < numbers in other_numbers where
number < n

24: numbers_greater_than_n < numbers in other_numbers where
number > n

25: Sort numbers_less_than_n, numbers_greater_than_n in de-

scending order
26: point_index < 1
27: for each number in numbers_less_than_n do

28: connection_points[n, (scheme with n and number)] —
point_index

29: point_index < point_index+ 1

30:  end for

31: for each number in numbers_greater_than_n do

32: connection_pointsn, (scheme with n and number)] —
point_index

33: point_index < point_index + 1

34:  end for

35: end for

36: return wire frame_lengths, connection_points

Time complexity analysis (let m denote the number of layer selec-
tion schemes and L denote the maximum layer number):
* Step 1: O(mlogm) for sorting m schemes by range size and layer
values using comparison-based sorting.
+ Step 2: O(m?) in the original method, as each scheme checks
overlap with all previously processed schemes. With interval tree
optimization, this can be reduced to O(mlogm) by maintaining

wireframe lengths and ranges in an interval tree for O(logm)
overlap queries.
* Step 3: Let k; denote the number of schemes containing layer
[. The original method requires O(ZIL:1 k;logk;) for sorting
schemes at each layer. Assume an extremely worst case where
k; = m for all /, and then the time complexity is O(L x mlogm).
However, in reality, the actual complexity is obviously much
better.
Overall complexity: Original method achieves O(m? + Y- k;logk;),
and the worst-case bound is O(m? + L x mlogm). With interval tree
optimization, they are reduced to O(mlogm+ ZZL: 1 krlogk;) and O(L x
mlogm) respectively.

B.3 Design Alternatives
B.3.1 Matrix Visualization for Token Probability

Our design alternatives for token probability include the matrix visu-
alization, as shown in Figure 3. The reasons for finally choosing the
ranking chart have been stated in the paper.
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Fig. 3: Matrix visualization showing token probability data captured when
using “The first Turing Award winner is” as model input.

B.3.2 Band Design for Set Visualization

We evaluated several alternatives before selecting wireframes as our
approach. One alternative is curved edge bands, as shown in Figure 2B.
To eliminate visual clutter, we optimized the scheme ordering using a
greedy strategy, with an objective function based on the weighted sum
of intersection points and overlapping areas. Figure 2B displays the
results after optimization. As can be seen, despite these optimization
efforts, significant overlap persisted, hindering the intuitive perception
of set relationships.

B.4 Implementation

KEditVis uses a client-server architecture with Vue.js for the front-
end and Python Flask for the back-end. LLMs are accessed through
Hugging Face, and knowledge editing procedures are performed on a
server equipped with an NVIDIA A100 (80GB) GPU.

C USAGE EXAMPLE

The two usage scenarios provided in the paper present intricate narra-
tives with multiple analytical ideas and insights. To help readers clearly
understand the system’s workflow, we provide a straightforward usage
example as a supplement.

Suppose John is an LLM expert. After selecting the model to be
edited, he first engages in dialogue through the LLM chat view
to check the model’s answers to factual questions. At the same
time, he can generate knowledge graphs for entities of interest,
and then generate corresponding factual questions in LLM chat
view by examining the relationships between different entities in
the knowledge graphs. When he discovers knowledge he wants
to edit, for example, when the model responds to a certain factual
question with an incorrect answer, he adds a fact to be edited in
the "facts for editing" list below.

Next, to deepen the model’s memory of the edited fact, he
clicks the “+” button and in the popup window instructs the system
to automatically generate another fact with the same meaning but
expressed differently. This way, both facts will be used together
for editing in the subsequent stage. Then he clicks the “+” button



and, in the popup window, requests the system to automatically
generate several test prompts. After reviewing them, he modifies
very few items, ultimately obtaining satisfactory prompts for
testing.

Subsequently, John double-clicked on the edited fact, immedi-
ately displaying a cosine similarity bar chart and token ranking
chart. Based on the trends in the bar chart, John selected a series
of layers, and then clicked the "Recommend" button, at which
point the system automatically suggested several layer selection
schemes. Afterward, combining the trends observed in the cosine
similarity bars and the ranking chart, he added several more layer
selection schemes. In general, during this process, he selected
several schemes that he considered reasonable by analyzing and
making trade-offs.

John compared the editing results of various schemes. For
schemes with close results or poor outcomes, he expanded the
details of the results and analyzed the reasons for the poor out-
put results. Simultaneously, by observing the layer scope of
these schemes through set visualization, he derived several con-
clusions and insights. Furthermore, by comparing the editing
results among different schemes and the cosine similarity bars
and token ranking charts before and after editing, he selected
what he considered to be the optimal editing scheme. However,
John found that there were still indicators in the scheme that were
not satisfactory, so he constructed corresponding facts, selected
several layer selection schemes, and performed a second round of
editing. Among the various options, he conducted comparisons
and analyses, selecting a satisfactory scheme.

Finally, John checked the drift view to observe the offset of the
hidden states before and after the edits. He saw that the scatter
points before and after the edits were basically the same, and he
zoomed in to check again. He also sorted by drift value in the
table on the right, browsed through some of the instances where
the output changed after editing, and confirmed that the edits had
no obvious negative impact on the model.

D DETAILS OF THE USER STUDY
D.1 Tasks

In each task, we will ask participants to edit the specified subject into
the specified target answer, and we will provide a sample fact for editing
as an example. Next, participants will go through the following five
stages.

 Stage 1. Participants are asked to start from the LLM chat view
to examine the model’s current output.

 Stage 2. Participants are asked to construct facts for editing and
prompts for testing.

 Stage 3. Participants are asked to select layers based on the cosine
similarity bar chart and token ranking chart.

» Stage 4. Participants are asked to analyze and compare differ-
ent schemes. They can review the overall metrics of different
schemes, detailed results, and changes in the cosine similarity bar
charts and token ranking charts before and after editing. Here,
they can repeatedly execute stage 3, adding other schemes of
interest. Ultimately, they are required to select what they consider
to be the optimal scheme.

 Stage 5. Participants are asked to use and examine the drift view
to analyze the global impact of the edits on the model.

D.2 Results of SUS Questionaire

The raw results of the SUS questionnaire are shown in Table 2.
According to the SUS standard guidelines, for even-numbered ques-
tions, lower scores are better, while for odd-numbered questions, higher
scores are better. Therefore, we converted the scores for even-numbered
questions from x € [1,5] to 5 —x, and the scores for odd-numbered ques-
tions from x € [1,5] to x — 1. The processed results are shown in Table

Then, we multiplied the sum of all scores by 2.5, resulting in a final
SUS score of 86.25. Based on research on SUS score factors, we also

Table 2: Raw results of the SUS questionnaire

Participants QI Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 QIO

Pl 4 2 4 2 4 2 5 2 5 3
P2 5 2 5 1 5 1 5 2 4 1
P3 4 2 4 2 5 1 4 2 4 1
P4 4 2 3 2 4 2 5 2 5 2
P5 4 3 3 2 4 2 4 2 4 3
P6 5 1 5 1 4 1 5 1 5 1
P7 5 1 5 1 4 1 5 1 5 1
P8 5 2 4 2 5 1 5 2 5 1
P9 5 1 4 1 5 1 4 1 5 1
P10 5 2 5 2 4 2 5 2 5 3
P11 5 1 5 1 5 1 5 2 4 1
P12 4 2 4 2 5 1 4 1 4 3

Table 3: Processed results for SUS questionnaire

Participants QI Q2 Q3 Q4 Q5 Q6 Q7 Q%8 Q9 QIO
P1 3 3 3 3 3 3 4 3 4 2
P2 4 3 4 4 4 4 4 3 3 4
P3 3 3 3 3 4 4 3 3 3 4
P4 3 3 2 3 3 3 4 3 4 3
P5 3 2 2 3 3 3 3 3 3 2
P6 4 4 4 4 3 4 4 4 4 4
P7 4 4 4 4 3 4 4 4 4 4
P8 4 3 3 3 4 4 4 3 4 4
P9 4 4 3 4 4 4 3 4 4 4
P10 4 3 4 3 3 3 4 3 4 2
P11 4 4 4 4 4 4 4 3 3 4
P12 3 3 03 3 4 4 3 4 3 2

calculated detailed usability and learnability scores. The usability score
was 86.98 (sum of Q1-3 and Q5-9 scores, multiplied by 3.125), and the
learnability score was 83.33 (sum of Q4 and Q10 scores, multiplied by
12.5).

D.3 Cosine Similarity Analysis

In the post-hoc analysis of the user study, we assessed the global
impact on the model caused by participants and baselines through a
cosine similarity analysis between pre-edit and post-edit hidden states,
computed before t-SNE projection. The results (shown in Table 4)
showed that the cosine similarity values were all extremely close to 1
(all values rounded to 7 decimal places), indicating minimal effects on
the model’s general performance.

Table 4: Cosine similarity analysis between pre-edit and post-edit hidden
states

Task Method Cosine similarity
Task 1 Baseline I 0.9999993
Baseline II 0.9999974
Baseline III 0.9999979
Participants’ average 0.9999979
Task 2 Baseline I 1.0000000
Baseline II 0.9999999
Baseline III 0.9999999
Participants’ average 0.9999997
Task 3 Baseline I 0.9999943
Baseline IT 0.9999983
Baseline I1I 0.9999983
Participants’ average 0.9999974

D.4 Output Changes Examination

In the post-hoc analysis of the user study, we also evaluated whether
the model’s outputs showed semantic changes before and after editing
by examining the outputs of 1000 samples in the drift view. The results
(shown in Table 5) show that the outputs for the vast majority of samples
did not change, with only a small number showing changes, and among



these, most maintained the same semantic meaning (despite changes in
content). Specifically, regardless of task or whether we’re examining
the baselines or participant-selected schemes, more than 94% of sample
outputs remained unchanged. Among the samples with output changes,
over 70% maintained semantic consistency. The number of samples
with semantic changes did not exceed 8 in any case, with the majority
of these changes representing corrections from incorrect to correct
answers. This therefore further validates that the global impact of the
editing on the model is negligible.

Table 5: Analysis of output changes across 1000 samples

Task  Method Number of samples
No Changed Semantic W—R R—W
change preserved
Task 1 B-1 975 25 18 6 1
B-1I 964 36 29 4
B-III 968 32 28 3 1
P-avg 967.7 323 28.1 3.1 1.2
Task 2 B-1 995 5 5 0 0
B-1I 988 12 10 1 1
B-1II 988 12 10 1 1
P-avg 988.9 11.1 8.2 1.9 1.0
Task 3 B-1 944 56 48 5 3
B-1I 962 38 35 3 0
B-1II 962 38 35 3 0
P-avg 957.7 423 38.5 2.5 1.3

Note: B-I/II/III = Baseline I/II/I1I; P-avg = Participants average; W—R =
Wrong to Right; R—W = Right to Wrong

D.5 Semantic Changes Examination

We conducted a preliminary supplementary test on our additionally
constructed benchmark (100 test samples for each task), which con-
tains similar concepts to those that were edited. This benchmark was
constructed by first automatically generating content using the Claude
Sonnet 4.5 model, followed by manual inspection. We tested both the
editing schemes selected by participants and those selected by baselines
on the benchmark to determine how many samples experienced seman-
tic changes before and after editing. In the future, we can continue to
expand the scale of test samples.

Results. The results (shown in Table 6) showed that the participants’
edits preserved 98.6%, 82.1%, 68.8% of answers to these queries in the
three tasks respectively. This indicates that the semantics of most simi-
lar concepts are not affected by these edits. Moreover, we conducted
one-sample z-tests to compare participants’ edits against each individual
baseline method across three tasks. In Task 1, participants significantly
outperformed Baseline II (#(11) = 3.000, p < 0.05) but were com-
parable to Baseline I (#(11) = —0.200, p = 0.845) and Baseline III
((11) = —1.000, p = 0.339). For Task 2, participants underperformed
Baseline I (#(11) = —3.182, p < 0.01) but significantly outperformed
Baseline I (#(11) = 11.000, p < 0.001) and Baseline III (#(11) = 11.000,
p < 0.001). In Task 3, participants underperformed Baseline I (#(11)
= —19.282, p < 0.001) while being comparable to Baseline II (#(11)
= —1.483, p =0.166) and Baseline III (z(11) = —1.483, p = 0.166).
Overall, there is little difference between the edits made by participants
and those made by baselines.

Reflection. We speculate that the reason why participants’ edits in
Task 2 and Task 3 are slightly lower than Baseline I is that participants’
editing strategies are more aggressive, aiming for effective edits, and
they typically consider the synthesis and trade-offs between various
metrics. They consider the impact of editing on similar concepts but
not this aspect alone. Since Baseline I has weaker editing effects than
participants’ edits, this may also be one reason why it has slightly less
impact on similar concepts.

E RUNTIME COST

We experimented and collected statistics on the time required to perform
knowledge edits in our system with different editing layers and different
numbers of facts for editing. Specifically, we conducted dedicated

Table 6: Results of evaluation on the additional 100 test samples

Task Method No semantic change
Task 1 Baseline I 98
Baseline IT 94
Baseline 111 99
Participants’ average 98.6
Task 2 Baseline I 85
Baseline II 72
Baseline IIT 72
Participants’ average 82.1
Task 3 Baseline I 71
Baseline II 69
Baseline IIT 69
Participants’ average 68.8

runtime testing for knowledge editing functions in our source code.
Before timing, we performed a GPU warm-up step to ensure consistent
results. By varying the number of facts and the number of editing
layers, we collected the performance data presented in Table 7.

Table 7: Runtime (in seconds) for different numbers of facts and layers

Number of Facts Number of Editing Layers

1 2 3 4 5 6 7 8
1 21772 3.1964 5.1587 6.3586 7.7783 9.0310 10.4337 11.7917
3 3.8359 4.4687 6.0355 7.5027 9.0522 10.5649 12.0889 13.6447
10 4.8686 8.9297 10.6578 12.4918 14.4483 16.2602 18.2453 20.1653
25 11.5129 13.5332 16.6905 19.8711 22.9720 26.1024 29.3217 32.3459
50 17.0668 20.9990 25.6857 30.9108 35.4627 41.1918 45.9054 50.9609

The Number of Editing Layers. Since too many editing layers
can lead to over-editing and poor editing effects, testing an excessive
number of editing layers is not meaningful. We tested layers ranging
from 1 to 8 (8 layers is already quite substantial and often leads to over-
editing, so increasing beyond this point is not meaningful). The results
show that runtime cost is positively correlated with the number of
editing layers, but even with 8 layers of editing, the time consumption
is not substantial.

The Number of Editing Facts. As can be seen, even when the
number of edited facts reaches 50, the editing process does not consume
excessive time. Furthermore, the results reveal a sublinear relationship
between runtime and the number of facts. While runtime does increase
as facts are added, the growth rate (the first derivative of the growth
curve) remains below 1. This sublinear growth pattern suggests that
even when processing substantially larger fact sets (e.g., 100 or several
hundred facts), the expected runtime would remain within reasonable
bounds, not exceeding a few minutes.
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