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Fig. 1: The workflow of KEditVis consists of the following parts: Users start with the LLM chat (they can also start from a knowledge
graph, using it to easily generate natural language for the LLM chat) to observe the model’s answers to factual questions and determine
the editing object. Then: (A) Users generate facts for editing and prompts for testing; (B) Users analyze and select layers as the
editing target based on our designed model layer visualizations, including cosine similarity charts and token ranking charts; (C) Users
perform comparative analysis of different layer selection schemes, where the layer range relationships between different schemes are
presented using set visualizations, and the editing results include both overall outcomes (multi-metrics ranking) and detailed results; (D)
After users select a satisfactory editing scheme, they finally use scatter plots to examine the global impact of the edits on the model.

Abstract—Large Language Models (LLMs) demonstrate exceptional capabilities in factual question answering, yet they sometimes
provide incorrect responses. To address this issue, knowledge editing techniques have emerged as effective methods for correcting
factual information in LLMs. However, typical knowledge editing workflows struggle with identifying the optimal set of model layers for
editing and rely on summary indicators that provide insufficient guidance. This lack of transparency hinders effective comparison and
identification of optimal editing strategies. In this paper, we present KEditVis, a novel visual analytics system designed to assist users
in gaining a deeper understanding of knowledge editing through interactive visualizations, improving editing outcomes, and discovering
valuable insights for the future development of knowledge editing algorithms. With KEditVis, users can select appropriate layers as the
editing target, explore the reasons behind ineffective edits, and perform more targeted and effective edits. Our evaluation, including

usage scenarios, expert interviews, and a user study, validates the effectiveness and usability of the system.

Index Terms—Knowledge Editing, Visual Analytics for Machine Learning, Large Language Models

<+

1 INTRODUCTION

Large Language Models (LLMs), pretrained on extensive and massive
datasets, demonstrate remarkable capabilities in factual question an-
swering. However, the accuracy of LLMs’ responses is limited by the
pretrained datasets, which may contain outdated and inaccurate informa-
tion, making it necessary to update LLMs from time to time to maintain
their knowledge accuracy [40,63]. Knowledge editing techniques have
emerged as an efficient and effective approach for correcting factual
information in LLMs, requiring much less computational resources
and being less prone to overfitting than traditional fine-tuning, while
offering greater accuracy than prompt-based methods [56,66]. These
techniques enable users to modify the weights of specific LLM layers
based on new factual information (Figure 2), ensuring these knowledge
updates persist and inform responses to future queries.
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Correcting a specific factual error in LLM responses with knowl-
edge editing typically involves a three-phase workflow. First, relevant
facts are gathered and organized into standardized triplets represent-
ing the subject, relation, and target answer (e.g., (United States,
President, Donald Trump)) to serve as inputs for the editing pro-
cess. Next, techniques like MEMIT [40] automatically modify weights
across selected consecutive model layers using these facts. Finally, the
effectiveness of edits is assessed using quantitative indicators based on
a set of testing prompts comprising different partial sentences about the
targeted knowledge, like “the current leader of America is ...”.

However, the current workflow heavily depends on manual iden-
tification of relevant facts and test prompts, and automated editing
techniques may struggle to target the optimal set of layers, which can
result in over-editing, producing abnormal responses, or under-editing,
where the model continues to respond incorrectly to slightly variant
queries. Moreover, evaluating editing effects across different layer
selections requires more than summary indicators alone, as current
automated assessment methods can sometimes yield inaccurate assess-
ments, making it necessary to incorporate manual inspection of detailed
outcomes. Overall, the lack of transparency in editing processes hinders
the effective comparison and identification of optimal editing strategies.

The limitations observed in the current workflow motivate us to
design and develop an interactive approach to knowledge editing of
LLMs. Two major challenges arise in this process:

The selection of appropriate model layers as the editing target.
Different types of knowledge have distinct storage patterns across
LLM layers, with each type distributed across multiple layers, thus
requiring careful selection of the editing layers based on the facts to be
edited to achieve more targeted edits. It is challenging to explain and
reason about the knowledge editing process and to identify which layers
are most relevant to the knowledge being edited due to the complex
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Fig. 2: Example of knowledge editing.

structure of LLMs. Furthermore, interpreting behavioral changes in
models before and after editing, as well as understanding the impact of
a single editing operation on the model, continues to pose challenges.

The identification of causes of suboptimal editing results. Current
evaluation methods primarily focus on summarizing various metrics
in tabular forms, which only present an aggregate overview of results
while lacking the granularity needed for detailed analysis. Without thor-
oughly examining the relationships between edited facts, editing layers,
and the resulting model behavior, users lack strategies to refine their
edits. Designing effective visualizations is challenging, as they should
be capable of supporting multi-criteria comparative analysis of different
editing schemes, as well as helping identify issues in suboptimal results
and more effective editing schemes.

Through collaboration with four domain experts, we analyzed do-
main problems and summarized the design requirements for the visual
analytics. Based on this, we proposed KEditVis, a novel visual analytics
system for knowledge editing in LLMs, which features an interactive
edit view specifically designed to address the above challenges.

To address the first challenge, we designed model layer visual-
izations based on two representative automatic layer selection ap-
proaches [24,25] to depict high-probability tokens across layers and
highlight appropriate editing scopes, enabling users to interactively
weigh candidate layers and select contextually optimal strategies, as
well as analyze model changes before and after editing. For the sec-
ond challenge, we leveraged set visualization [2] to associate different
editing schemes with their selected layers and present the overview and
detail results of each scheme, helping users conduct in-depth multi-
criteria analysis, perform comparisons across different schemes, as well
as identify causes of suboptimal edits and better editing schemes.

To evaluate the effectiveness and usability of KEditVis, we presented
two usage scenarios that demonstrate its practical value and the insights
gained. We also conducted one-on-one interviews with three experts
to gather their feedback. Finally, we conducted a user study with 12
participants to further validate the system’s usability, which yielded
valuable insights regarding both the system and knowledge editing.

The major contributions of this paper are as follows:

* We characterize the problem of interactive knowledge editing by
soliciting and compiling user requirements through the collabora-
tion with four domain experts.

¢ We develop KEditVis, a visual analytics system for exploring
knowledge editing insights and performing more targeted and
effective edits. Its effectiveness is demonstrated by an evaluation
comprising usage scenarios, expert interviews, and a user study.

2 RELATED WORK
2.1 Knowledge Editing Methods

Based on previous studies [55,56,61], we categorize knowledge editing
into weight-preservation and weight-modification methods.

Weight-preservation methods can be divided into two types: external
memory approaches [38,58,67,68] that leverage external storage and
in-context learning [17] to achieve knowledge editing, and parameter
expansion approaches [16,22,26,59] that introduce external parameters
while keeping the original model parameters unchanged. However, as
the amount of knowledge requiring editing increases, these methods
separately show limitations: higher storage capacity requirements; and
increased inference burden and system complexity [34].

Weight-modification methods alter model parameters through global
optimization or local modification. Global optimization employs spe-
cific and constrained strategies like constrained fine-tuning [10, 44, 64]
and intermediate fine-tuning [11, 14,43] — unlike simple fine-tuning
which easily leads to overfitting. However, these approaches remain
inefficient due to the large number of model parameters and can easily
affect knowledge outside the editing scope. The local modification
methods, which this paper primarily focuses on, represent current main-
stream knowledge editing approaches. These methods are built upon the
finding that feedforward neural networks are key-value memories [20],
thus following a locate-then-edit strategy. While early studies such
as KD [13] and ROME [39] focused on editing individual facts, the
introduction of MEMIT [40] enabled the simultaneous editing of multi-
ple knowledge instances. Subsequently, several methods built on and
further improved MEMIT have emerged [18,25,27,35]. Among them,
AlphaEdit [18] is the latest, achieving state-of-the-art performance
through minor modifications to MEMIT with only a single line of code
added. Our proposed visual analytics system offers generalizability and
is not constrained by specific editing methods; it supports the afore-
mentioned mainstream approaches such as MEMIT and AlphaEdit.

2.2 Visual Analytics for Machine Learning

There has been an increasing amount of studies leveraging visualization
to support machine learning, with the aim of facilitating the understand-
ing and improvement of machine learning models [15, 50, 60, 65]. We
categorize these studies into two types: approaches exploring models
from an architectural perspective and those exploring models from a
data perspective. For the former, some studies have utilized interactive
methods to reveal the structure of deep neural networks [12,28,47,48]
and DNN-based models, such as CNNs [5,36,57], RNNs [31,42,51],
and Transformers [62]. For the latter, some works start from a data per-
spective [53], utilizing visualization techniques to explore and improve
both the model and the data associated with it [7,9,23,32,33,49,52,54].

By contrast, our research explores knowledge editing from both
model architecture and data perspectives. Since previous work lacks
interactive methods that directly target knowledge editing processes,
our work offers novelty and usefulness to the field of visual analytics.

2.3 Multi-Criteria Decision Making

Multi-criteria decision making (MCDM) is a method that helps
decision-makers make informed decisions under multiple conflicting
attributes or criteria. We categorize MCDM methods into traditional
methods and interactive methods.

Traditional methods consist of Analytic Hierarchy Process (AHP),
Fuzzy AHP, TOPSIS, ELECTRE, and Grey Theory [3]. For instance,
TOPSIS [45] calculates the distance between alternatives and ideal
solutions to rank them. Visual ranking techniques dominate interactive
methods, providing decision-makers with intuitive visualizations of
multiple metrics to effectively sort and analyze alternatives. These
techniques include tabular-based and glyph-based visualizations. For
tabular-based visualizations, ValueCharts [8] stands as a pioneering
work; building upon this foundation, LineUp [21] enables the inter-
active comparison of multi-attribute rankings through intuitive visu-
alizations of weighted attributes and ranking changes. Glyph-based
visualizations use various glyphs to visually compare multiple rank-
ings [4,46]. For example, Behrisch et al. [4] used radial node-link
glyphs to help users identify patterns across different ordering methods.

In this paper, we also leverage visual rankings to compare editing
outcomes across different schemes. We employ set visualization [1,2,
30,41] to display the relationships between schemes, with our algorithm
reducing visual clutter to better facilitate comparative analysis.

3 REQUIREMENT ANALYSIS
3.1 Background and Problem Formulation

To understand the current knowledge editing workflow and its lim-
itations, we collaborated closely with four domain experts (E1, E2,
E3, E4) over the past year. E1 and E2 are NLP experts with a deep
understanding of knowledge editing mechanisms; E3 and E4 are in-
terdisciplinary researchers whose work focuses on visualization for



machine learning. We held regular online meetings with these experts,
during which we asked them to share their experience with knowledge
editing and envision improved solutions that incorporate interactive
approaches. Through this collaboration and a review of relevant litera-
ture [18,40,55,56,61], we have summarized the application scenarios,
experts’ method, and workflow as follows.

Application scenarios and research scope. Knowledge editing
“is a relatively fine-grained model editing method suitable for mak-
ing precise adjustments” (E2). When editing a small number of facts,
knowledge editing methods “are less likely to cause overfitting” (E2).
However, for large-scale editing, these methods may not be superior
to traditional fine-tuning, and large-scale knowledge editing “can in-
troduce toxicity and potentially lead to model collapse” (E1, E2). In
practical applications, large-scale editing “typically employs traditional
fine-tuning rather than knowledge editing methods” (E1, E2). Mean-
while, editing a small number of facts is widely common in practical
scenarios, such as when occasionally correcting a few errors that are
discovered after model deployment (E1, E2, E3).

Based on these observations, we decided to focus this study on
small-scale editing (1-100 facts per session). While the current solution
may not scale well for large-scale editing tasks, we note that in these
uncommon cases, automated methods could be applied first, and when
poor edits are detected, they could be routed to our system.

Knowledge editing method. Experts pointed out that among the
categories of the knowledge editing methods, local modification meth-
ods, which follow a locate-then-edit strategy, are currently the most
mainstream and representative. Our literature review also supports this
claim [18,40,55,56,61]. Among these methods, MEMIT [40] is the
most popular one, while AlphaEdit [18] is currently the state-of-the-art.
Regardless of the specific method details, they typically operate in two
key steps: (1) computing target vectors z; (i represents the i-th fact)
for each fact to be edited, and (2) sequentially updating weights of
pre-selected MLP layers identified through preliminary experiments.
The pre-selected layers must form a continuous range, and weight up-
dates proceed from lower layers toward higher layers, with each layer’s
weight change calculated based on both the weights of previously up-
dated layers and the z; values computed for all facts in the first step.
For a more detailed introduction, please refer to the appendix A.

A primary limitation of current editing approaches lies in their layer
selection methodology, which relies on static, model-specific presets
(e.g., in MEMIT, layers 4-8 for Llama3-8B and 13-17 for GPT2-
XL), thus ignoring the fact-specific contextual signals required for
precise edits. In particular, repeated edits on fixed layers may induce
cumulative parameter drift — a primary cause of catastrophic model
collapse, urging for interactive approaches that can select the range of
layers based on knowledge editing goals.

Workflow and limitations. Currently, the typical knowledge editing
workflow is divided into three phases, each with its own limitations.

First, both editing facts and testing prompts need to be properly
constructed. The former should be organized into triplet format, while
the latter should be divided into multiple testing categories, each con-
taining several prompts. Experts noted this process “requires manually
constructing prompts based on the edited fact, which is tedious” (E4).

Second, the automatic methods called for knowledge editing face
limitations as they “make it difficult to target the layers most suitable for
editing” (E1), leading to over or under-editing. The edited model can
easily “confuse concepts, produce hallucinations, or output repetitive
words” (E2). The experts consider the selection of editing layers the
most important and flexible hyperparameter. Nevertheless, interpreting
LLMs’ complex structure is not a straightforward task. It is challenging
to extract key model data and to visualize it in ways that effectively
guide users toward making reasonable layer selection decisions.

Finally, several overall metrics are used to provide a general assess-
ment of the editing results. However, experts highlighted the limitations
of automated evaluation methods, noting that they sometimes incor-
rectly classify outputs that actually contain correct answers as erroneous.
This highlights the necessity and value of human involvement in the
analysis process. Overall, due to the lack of transparency in the editing
process, it is challenging to compare different strategies and identify

the factors that contribute to optimal or suboptimal editing outcomes.

In addition, the experts noted that due to the lack of interactive
methods specifically designed for knowledge editing, users cannot
effectively explore or refine their editing strategies. Existing research
has predominantly focused on algorithmic advancements, leaving users
unable to identify or explore potential adjustment directions when edits
targeting individual facts or specific editing intentions yield suboptimal
results. This lack of flexible interaction mechanisms limits the ability
to achieve more effective and targeted knowledge editing in LLMs.

3.2 Analytical Requirements

Our goal is to help LLM practitioners perform knowledge editing more
precisely and effectively, as well as to explore relevant insights that
can benefit the development of knowledge editing techniques. During
online meetings, we conducted brainstorming sessions and prototype
discussions with domain experts. This iterative process enabled us to
refine and identify key user requirements for the visualization system.
Ultimately, we summarized the following six user requirements.

R1: Convenient and effective generation of facts and prompts.
The experts noted that fact and prompt construction is tedious in typical
workflows. The system should automatically generate these elements
based on user intent. Users need efficient ways to create facts and
comprehensive prompts across multiple categories to evaluate edit
effectiveness and potential knowledge interference. The experts also
suggested including knowledge graphs as references.

R2: Selection of appropriate model layers for editing. In typical
workflows, automatically executing knowledge editing methods fails
to target the most suitable layers, leading to poor results. The system
should extract and visualize key model data relevant to the intended
edit for informed layer selections. Users should be able to analyze and
weigh trade-offs, select appropriate layers, as well as understand model
changes by comparing visualizations before and after editing.

R3: Comparative analysis across editing strategies. Due to the
lack of transparency in the editing process, it becomes difficult to
compare editing strategies and understand poor outcomes. The system
should support comparative analysis of different editing schemes. Users
should be able to analyze variations between editing strategies and
their corresponding results, gaining practical insights into why certain
methods are effective while others produce suboptimal outcomes.

R4: Comprehensive presentation of editing results. Evaluation
in typical workflows relies on several overview metrics, the results of
which are sometimes not particularly accurate. Thus, users need both
overview and detailed visualizations of editing results. The overview
visualization provides a summary of evaluation results through core
assessment metrics, while detailed visualization requires text visualiza-
tion to display and compare each output in detail.

RS: Iterative algorithm execution and reversible model weights.
The experts believed that in the process of interactive exploration and
execution of knowledge editing, it cannot be concluded with just a
single edit. Users should be able to perform multiple edits on a model
in succession, with each edit building on previous results. If users
discover that an editing attempt has produced undesirable outcomes,
they can revert the model weights to before the last edit.

R6: Analysis of the global impact of editing on the model. The
experts noted that semantic conflicts in edited facts may potentially
lead to model collapse. To prevent this, users should be able to observe
and evaluate the global impact on the model, and check if any negative
effects have occurred. For providing a more understandable approach
for users, the experts suggested analyzing from the perspective of data
input-output and whether shifts have occurred.

4 KEDITVIS

Based on the requirements, we designed KEditVis, a visual analyt-
ics system for helping model experts explore insights and guidance
to perform more targeted and effective edits. The overview of KEd-
itVis’s workflow is shown in Figure 1. The edit view, as the core
view of the system, visualizes internal model data to facilitate selecting
appropriate layers for editing (Figure 3B1, B4), providing an under-
standing of model changes before and after editing (R2). This view



offers multi-dimensional features including presenting different layer
selection schemes (Figure 3B2) (R3), while providing an overview
comparison of editing results across schemes and displaying detailed
outcomes for comprehensive analysis (Figure 3B3) (R3, R4).
Justification. We abandoned designing interpretative visualizations
directly for editing algorithms and mechanisms, instead focusing on
understanding edits through other perspectives. This is because LLMs’
complexity and algorithmic abstractness make it difficult to explain
phenomena solely from algorithms. Second, such an approach would
reduce generalizability and not support different editing methods.

4.1

Interface Design. The system provides the LLM chat view (Fig-
ure 3A1) and the knowledge graph (Figure 3A2). Both the chat view
and knowledge graphs can serve as the starting point of a workflow,
accommodating two different scenarios. In one case, users arrive with
specific questions and directly engage in dialogue with the LLM to
examine the answers to factual questions; in the other case, users do
not have specific questions in mind and instead use knowledge graphs
to search for and investigate potential issues.

The chat view provides two modes: “Completion” and “Rewrite”.
The “Completion” mode enables users to examine how the currently
selected model (i.e., the model to be edited) completes answers to
factual questions, with model-generated content displayed in bold text
to distinguish it from user input. The “Rewrite” mode leverages GPT-4
to generate several test prompts (which can be added to the list of test
prompts below) based on the user’s written sentences. Moreover, the
system manages facts for editing and prompts for testing (Figure 3A3).

Test prompts are categorized according to different evaluation met-
rics. Drawing from prior research [24,25,40], the following metrics are
employed to assess editing performance: Efficacy Success (ES) mea-
sures whether the model produces edited knowledge when given the
original prompt; Paraphrase Success (PS) tests whether edited knowl-
edge applies when responding to paraphrased prompts; Neighborhood
success (NS) verifies that edits only affect targeted knowledge without
changing similar content; Editing Score (S) is the harmonic mean of ES,
PS, and NS; Reference Score (RS) evaluates alignment between model
outputs and reliable references like Wikipedia; Generation Entropy
(GE) assesses output naturalness and language quality after editing.
Higher values indicate better performance for all the above metrics.

As shown in Figure 3A3, test prompts are categorized with different
colored tags according to their evaluation metrics: “Efficacy”, “Para-
phrase”, “Neighborhood”, and “Generation” (R1). The first three are
used to evaluate the ES, PS, and NS metrics respectively, while the last
one is used to evaluate both RS and GE.

Interaction. The knowledge graph, constructed in real-time based
on user-input keywords (R1), can generate corresponding natural lan-
guage questions in the LLM chat view when two nodes are clicked,
eliminating manual typing. Clicking “+” above facts or prompts opens
a popup window: for facts, users can either add their own or let the
system generate multiple synonymous expressions of a given fact (they
can be used together in one edit to enhance the model’s memory of this
knowledge); for prompts, users can add their own or have the system
automatically generate various test prompts based on the editing object
(R1). Automated generation eliminates tedious manual work by users.

Generating Editing Facts and Testing Prompts

4.2 Selecting Layers for Editing

Visual Design. The edit view integrates two layer selection approaches
and displays critical data, including the cosine similarities across dif-
ferent model layers and the five highest probability tokens for each
layer, to assist users in making informed layer selection (R2). These
two types of data are visualized through our designed model layer
visualizations (Figure 3B1), including a cosine similarity bar chart and
a token probability ranking chart, which are integrated into a unified
visualization design as they share the layer axis as a common coordi-
nate. This visualization design is positioned on both the leftmost and
rightmost sides of the edit view (Figure 3B1, B4), enabling users to
compare internal data across different edited versions of the model (i.e.,
the model after a specific number of edits) (R2).

Interaction. When double-clicking a fact before editing, it serves
as input to the model, and subsequently the corresponding bar chart
and ranking chart will be displayed in the edit view. Users can not only
add layer ranges by clicking specific cosine similarity bars or circles in
the ranking chart, but also remove previously selected layer ranges by
clicking on the scheme (rectangle with numbers). The “Recommend”
button automatically suggests potentially effective sub-ranges within
the most recently selected layer range (R2). It identifies the 50% of
layers with the lowest cosine similarity values in this range and uses
combinations of these as boundaries for new sub-ranges.

Layer Selection Approach. By surveying recent knowledge edit-
ing studies, we identified two approaches from the literature [24,25]
for dynamically selecting layers for editing. The inclusion of these
two approaches helps users balance the advantages of both methods,
providing references from complementary perspectives on numerical
significance and token-level semantic information. This allows users to
make trade-offs based on their specific needs and interests when select-
ing layers. We refer to these two approaches as the cosine similarity
approach and the token projection approach, introduced as follows:

4.2.1

When inputting the edited fact into the model, the cosine similarity
between the input and output hidden states can be calculated for each
MLP layer; layers with lower similarities indicate greater contributions
to knowledge processing and are therefore ideal candidates for the
starting and ending layers of the editing range [25].

Design of the cosine similarity bar chart. We encode the magni-
tude of cosine similarity values through the bar length. The mapping
between bar length and cosine similarity value follows this function:
length = L,y - (1 —tanh(f - cos_sim)), where Lmax represents the max-
imum bar length when the cosine similarity value equals zero. There
are two main reasons for choosing this function. First, we need to
assign longer bars to represent cosine similarity values closer to zero,
which are considered more significant, as longer bars make these im-
portant values more readily identifiable to users. Second, we observed
that several layers often exhibit cosine similarity values very close
to zero, which would result in nearly identical bar lengths if a linear
mapping were used, thus making visual discrimination difficult. We
set B = 6 to amplify the differences in bar length for these near-zero
cosine similarity values, enabling clearer visual distinction.

Cosine Similarity Approach

4.2.2 Token Projection Approach

When inputting the edited fact into the model, the five highest probabil-
ity tokens across each MLP layer can be computed by projecting the
representation of the input content’s subject token onto the vocabulary
space; the range between the two layers where target tokens show the
highest probabilities is considered to be processing target knowledge
and is typically selected [24]. Additionally, we can use the same method
to calculate the highest probability tokens for the input content’s last
token, which shows the model’s probability predictions for the next
token output based on the current input.

Design of the token probability ranking chart. The ranking chart
visualizes the five highest-probability tokens at each layer. We encode
token probability values across layers using variable-sized circles, with
larger circles indicating higher probabilities, minimal semi-transparent
circles representing zero values. Connecting lines link the same to-
ken across layers. Hovering over any circle reveals detailed token
information while highlighting its complete path and dimming others.

Since ranking charts for the subject token and for the last token can
use the same visualization method, the system provides visualization for
both, allowing users to switch between them. The former directly helps
select appropriate editing layers, while the latter reveals the model’s
reasoning path and how it generates the final output tokens step by step.

Justification. We chose ranking charts after evaluating alternatives.
Matrix visualization seemed suitable for discrete token probability data
using color intensity encoding, but testing with real data revealed poor
representation of token relationships and cross-layer changes (see the
appendix B.3.1). Unlike fixed-position matrices, ranking charts effec-
tively display probability values and track changes across layers while
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Fig. 3: The interface of our visual analytics system KEditVis. The system provides (A1) an LLM chat view for interactive dialogue, (A2) a knowledge
graph, and (A3) management of editing facts and testing prompts. The edit view visualizes (B1 and B4) key internal data of the model layers both
before and after editing, facilitating the selection of appropriate layers for editing and comparison of different model versions. The edit view leverages
(B2) set visualization to show the relationship between different schemes, and combines (B3) both overview results and detailed results to compare
and evaluate the editing outcomes across schemes. (C) The output comparison view employs text visualization to compare the model’s outputs
before and after model editing. (D) The drift view visualizes the global impact of edits on the model through a scatter plot.

revealing data stability and model information processing characteris-
tics through flexible positioning, better aligning with our requirements.

4.3 Comparing Different Schemes

The wireframes (links associating ranges of layers to rows in the table
as in Figure 3B2) and table (Figure 3B3) in the edit view are designed
to evaluate and compare different layer selection schemes (R3). The
wireframe provides the visualization of different layer selection sets,
allowing users to explore relationships between different selections,
such as intersection and difference relations. The table features a multi-
metric ranking visualization, where longer bars represent higher values.

After clicking the “Compare” button, the system generates a pre-
view of knowledge editing evaluation results in the table for different
layer selection schemes based on all the test prompts (R3). In the
column header, clicking the sort icon arranges metrics in descending
order; clicking the distribution graph icon displays layer-wise metric
distributions in the layer column, using red intensity to encode values.

4.3.1

Since the layer selection scheme includes continuous layers, we vi-
sualize the set relationships between schemes using wireframes that
connect the first and last layers of each scheme’s layer range (R3). As
shown in Figure 6A, when schemes share boundary layers, we divide
layer rectangle edges (in the “layer” column) into equal segments for
different wireframe connections, preventing visual clutter from overlap-
ping wireframes. The horizontal lengths of different wireframes may
vary, further preventing visual clutter from overlapping wireframes.
Displaying wireframes to minimize visual clutter is an NP-hard
problem. To generate and update these wireframes in real time, we
designed a heuristic visualization algorithm based on a greedy strategy
that determines the layout of each wireframe. First, we generate an
ordering for schemes based on their layer scope. Second, we traverse
the ordering and calculate each wireframe’s horizontal length (ensuring
the smallest possible horizontal length while maintaining no overlaps)

Layer Selection Visualization with Wireframes

and the number of division points for each layer rectangle’s edge. Third,
we traverse each layer and connect each wireframe to its optimal divi-
sion points to minimize wireframe crossings. This algorithm optimizes
wireframes to minimize crossings and overlaps while using the smallest
possible number of distinct horizontal lengths. Its worst-case bound of
time complexity is only O(L x mlogm), where L represents the maxi-
mum number of layers, and m represents the number of schemes. The
detailed algorithms can be found in the appendix B.2.

Interaction. As shown in Figure 6A, clicking the sort icon sorts
schemes based on the intersection points of wireframes and dotted
line x|, thereby eliminating crossing lines between the two dotted
lines x; and x, (see the crossing lines in Figure 4C before sorting).
Furthermore, to help discover relationships between sets, hovering
over any scheme highlights related wireframes (those with intersecting
ranges and resulting calculated differences) while hiding others.

Justification. Throughout our design process for set visualizations,
we evaluated two alternatives before selecting wireframes. One ap-
proach was to connect the scheme to the layers and use edge bundling;
however, this technique introduced significant visual clutter due to the
high density of lines. Alternatively, we experimented with curved edge
bands and optimized scheme ordering using a greedy strategy, but de-
spite these optimization efforts, significant overlap persisted, hindering
the intuitive perception of set relationships (see the appendix B.3.2).

4.3.2 Scheme Comparison for Different Model Versions

Our system supports revision-based editing, where each execution
changes the model version (R5). The preview results in the table
(Figure 3B3) show the editing outcome that would result if an editing
scheme were applied to the current model version (indicated in the
“Version” column). Initially, the model version is 0. To actually change
the underlying model weights (which increments the model version
number by 1), users must either right-click on a scheme, or select a layer
range (by right-clicking cosine similarity bars or the circles in ranking
charts) and then click the “Edit” button. When additional schemes are



subsequently added to the table, their “Version” column values will
be one higher than the previous version (Figure 3B3). Users can thus
preview the results of different layer selection schemes under the same
model version or across different versions. Clicking the “Revert” button
returns the model to the previous version (RS).

4.3.3 Presentation and Comparison of Detailed Results

Users can expand the detailed editing results for each scheme, which
displays the results for all the test prompts and the answers output by
the edited model (R4). The results are arranged separately according
to the prompts’ categories. For the first three categories of prompts, a
color-coded background (green for passed and red for failed evalua-
tions) indicates the automatic assessment results, while hovering over a
result with the mouse will present the complete results with the model-
generated portions highlighted in bold. For “generation” type prompts,
the system provides a display button for each prompt. Clicking this
button triggers the output comparison view (Figure 3C), which offers a
comparative text visualization of the model’s output before and after
editing for that prompt (R4). This collapsible design enables seamless
switching between overview and details (R4).

The output comparison view displays pre-edit and post-edit outputs
for a prompt, including one pre-edit output and at least one post-edit
output (according to the previously set quantity). This feature lever-
ages the capability of LLMs to generate multiple different responses of
varying quality for a single prompt. For more detailed analysis, users
can select any pair of texts to see a diff visualization that uses a tradi-
tional red-green color scheme (red for deletions, green for additions),
allowing users to quickly identify key differences between these texts.

4.4 Checking the Global Impact of Editing

To help interpret the impact of edits on the global behavior of the model,
we reviewed the literature and decided to use the approach of capturing
the drift of the hidden states of the last edited layer before and after
editing [18]. We input a large number of prompts (usually 1000) into
the model and leverage the t-SNE [37] algorithm to project the hidden
states corresponding to each prompt onto a two-dimensional plane.
Visual Design. The scatter plot (Figure 3D) shows the hidden state
drift of all prompts before and after editing (R6). The table on the right
shows the drift distance of all prompts and the specific output changes
before and after editing. These output changes are visualized in the
same way as the text visualization in the output comparison view.
Interaction. The scatter plot can be zoomed in and out at any
location, allowing users to easily examine points of interest among the
large number of data points. Hovering over points displays a label with
detailed information, while clicking jumps to the corresponding table
row. The data in the right table can be sorted based on the drift values.

5 EVALUATION
5.1 Usage Scenarios

We demonstrate the practical value of KEditVis and the insights gained
by users through two usage scenarios. The first scenario involves a
counterfactual knowledge editing experiment. We chose this scenario
considering that COUNTERFACT [39] is a major standardized dataset
for knowledge editing. The second scenario demonstrates knowledge
editing as a means of information insertion to correct knowledge errors
in the model, representing one of its primary applications.

5.1.1 Scenario I: A Counterfactual Experiment

Jack, an LLM researcher, used KEditVis to uncover insights and inspi-
ration for knowledge editing. Initially, he engaged in conversational
interactions with the LLM to be edited. While discussing iPhone related
topics, he conceived a counterfactual editing experiment. Through the
knowledge graph (Figure 4A), he browsed information about iPhone,
including its manufacturer, operating system, and related products.
Then he introduced a counterfactual statement — “iPhone is developed
by Microsoft.” He created a test prompt of efficacy type and had the
system generate other types of test prompts automatically. Referring to
knowledge graph relationships, he made minor modifications to a few
prompts, ultimately obtaining satisfactory test prompts.

Upon double-clicking the fact for editing, the edit view displayed the
token ranking chart and the cosine similarities bar chart. Jack observed
a significant trend in cosine similarity for layers 6-12 (Figure 4B), with
prominent bars at layers 6 and 12, thus he added scheme 6-12 and
clicked “Recommend”. The system immediately suggested reasonable
layer-selection schemes within this range. After clicking “Compare”,
the system visualized knowledge editing results across schemes. Sort-
ing by descending GE value (Figure 4C), he found the bottom-most
scheme (6-12), despite being the widest layer range, produced the poor-
est results. Examining the details of the editing results for scheme 6-12,
he discovered the output for a test prompt contained numerous repeti-
tions of the word “Microsoft.” Additionally, in the output comparison
view, he observed the output for the prompt “iPhone is a” displayed
repetitive and incoherent sentences. These characteristics both reflected
and corroborated the low GE value. He concluded that the poor perfor-
mance was due to over-editing, which demonstrated that simple factual
edits may not require editing too many layers to avoid over-editing.

After clicking distribution icons, Jack observed that layers 6-7 ex-
hibited low values in the RS distribution and the lowest values in the
GE distribution. He therefore added the scheme 6-7 and the results
showed that editing layers 6-7 yielded poor performance (Figure 4D).
Upon opening the detailed results and the output comparison view, he
observed multiple instances of erroneous expressions like “windows
phone” in the model’s outputs, suggesting the model was confusing
its inherent knowledge with the edited knowledge, failing to properly
integrate the edited information. Furthermore, he noticed the difference
between layers 6-10 and 8-10 consisted precisely of layers 6-7, and
observed that the editing results for these two schemes were very close
(Figure 4D), which led him to conclude that layers 6-7 might neither
be critical layers nor suitable layers for editing the current knowledge.

Jack then shifted his attention to the scheme 6-10, which displayed
relatively excellent editing results, and right-clicked on it to change
model weights to version 1 (model after one edit). Due to poor NS
scores, he examined the test results of neighborhood prompts, and
observed the edited model incorrectly attributed the production of iPod
to “Microsoft.” He then created the fact “iPod is a product released
by Apple”, and upon examining its corresponding ranking chart, he
immediately noticing particularly large and prominent circles for layers
20-21 (Figure 4E), which belonged to the path for the word “windows”
(there was strong association between “windows” and “Microsoft”),
and the notable cosine similarity trend displayed in layers 8-14 and 6-8
(Figure 4E). Based on these observations, he added schemes 20-21, 8-
14, and 6-8. After clicking “Compare”, the results showed scheme 6-8
significantly improved the NS score without noticeably affecting other
scores (Figure 4F). Now the model correctly identified Apple as the
manufacturer of iPod. He recalled that prior work had not investigated
re-editing to enhance effects. This experience suggested it might be
possible to strengthen edits for specific knowledge by applying a second
edit with related information.

Finally, he right-clicked on scheme 6-8 to update to model version 2
and generated a scatter plot. Observing no significant shifts (Figure 4G),
he zoomed in on points with noticeable changes and used the right-side
table to verify no errors in the corresponding outputs. A few samples
related to the editing subject (e.g., electronic products and internet
companies) were slightly affected (though the output content was not
necessarily incorrect), with no significant impact on the model’s global
performance, confirming the edits were non-toxic.

5.1.2 Scenario Il: Model Error Correction

Emily, an LLM expert, applied knowledge editing to correct knowledge
in LLMs. She first analyzed the “Turing Award” knowledge graph
(Figure 5A) and inquired about its first recipient, finding the model
appeared uncertain about this question, responding with “a mystery
”. This prompted her to implement editing to instill this specific
information into the model. She generated test prompts using the
“Rewrite” mode and selectively added them to the list. Upon discovering
from the knowledge graph that the Turing Award is organized by the
ACM, she incorporated this relationship as a neighborhood prompt.
With minor adjustments, she finalized a list of suitable test prompts.
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Fig. 4: Scenario I: (A) The knowledge graph generated by the keyword “iPhone”; (B) the cosine similarity bar chart before editing; (C) the descending
comparison results after selecting scheme 6-12 and pressing the “Recommend” button and the “Compare” button; (D) the results after adding
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By examining the edit view (Figure 5C1), she noticed a distinct
trend in cosine similarity in layers 4-10 and added this scheme. Next,
noticing that layers 10-13 showed both a distinct cosine similarity
pattern and high probability values for the key token in the ranking chart,
she suspected these layers processed the question’s answer and added
this scheme. After clicking “Recommend” for more suggested layer
selections, she observed a trend for layers 0-4 and added this scheme
as well. Finally, out of curiosity, she added single-layer schemes 4 and
10 separately due to their particularly prominent cosine similarity bars.

When viewing the editing results, she sorted by metric S (Figure 5B)
and found scheme 10-12 showed the most effective editing perfor-
mance, with layers 10 and 12 having the longest cosine similarity bars.
Conversely, individual edits to layers 4 and 10 demonstrated the lowest
effectiveness. She concluded that despite their long cosine similarity
bars, single-layer edits produced extremely limited effects, suggesting
knowledge representation requires processing through multiple key
layers. She then observed that scheme 0-4 showed poor editing out-
comes despite the trend in cosine similarity, while editing the middle
layers generally produced more effective results. She concluded that
lower layers lacked fully formed specific knowledge representations,
so editing them likely interfered with similar knowledge memories
of the model, explaining the low NS value for scheme 0-4. Overall,
she concluded that single-layer edits were too narrow to capture com-
plete knowledge representation, while broader scopes like scheme 4-10
risked unnecessary interference. Scheme 10-12 offered the excellent
balance between precision and coverage.

After choosing scheme 10-12 for editing, which demonstrated op-
timal editing effectiveness, she examined and compared the ranking
charts (for the last token) and cosine similarities before (Figure 5C1)
and after (Figure 5C2) editing. She divided the model layers into
three sections for segmented analysis. (1) In layers 0-9, both charts
remained identical, confirming that editing preserved weights in these
early layers, resulting in identical hidden states. (2) In layers 10-12, the
pre-edit “honored” token showed a continuous path, while post-edit it
appeared as an isolated point, demonstrating the editing effect; despite
this change, for layers 10-12, both the cosine similarity bars and the

tokens remained similar between charts, with only token probability
distributions shifting, while the target word “Alan” only appeared in the
final few layers. This pattern verifies how knowledge editing preserves
the original information while making subtle modifications to the target
layers that gradually accumulate through information propagation in
subsequent layers, effectively guiding the final prediction. (3) In layers
13-27, both “Turing” and “Alan” maintained high probabilities post-
edit, while the overall number of non-zero probability tokens decreased.
The final layers showed the emergence of “Alan” as the correct answer
and exhibited reduced path crossings (transparent paths are ignored
as they represent zero probability). All these features demonstrate the
model’s increased confidence in its prediction after editing.

Finally, she generated a scatter plot and found the point positions
had barely changed. After zooming in to carefully examine individ-
ual points and the table on the right, she did not discover any issues,
confirming the edits’ success and leaving her satisfied with the results.

5.2 Expert Interviews

We interviewed three knowledge editing experts: E3 and two external
experts (E5 and E6). Our procedure comprised three phases: first, intro-
ducing our system through two usage scenario demonstrations; second,
allowing experts hands-on system exploration; and finally, conducting
interviews for effectiveness and usability feedback, summarized below.

Effectiveness. The experts unanimously found our system use-
ful with effective visualizations. First, they praised the edit view for
“providing important internal model information previously not easily
visible” (ES), with its well-designed elements effectively aligned with
the data and revealing previously difficult-to-identify patterns. They
also evaluated the edit view holistically, appreciating that it combines
result-oriented visualization with internal model representation anal-
ysis, with these aspects complementing each other. Furthermore, the
experts agreed that KEditVis’s graphics were more intuitive than tradi-
tional tabular formats, with set visualization effectively revealing issues
like layer range relationships, as E6 noted, “I wouldn’t have thought
of using set visualization to compare different layer choices without
the system.” Lastly, E6 noted that insights from our scenarios, such as
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Fig. 5: Scenario II: (A) The knowledge graph generated by the keyword
“Turing Award”; (B) the descending sorting of editing results from different
layer selection schemes; (C) the ranking chart (for the last token) and
the cosine similarity bars, before and after editing scheme 10-12.

over-editing when modifying too many layers, aligned with findings in
his previous research, thus further validating these insights.

Usability. The experts praised KEditVis’s usability, confirmed its
utility in helping them conduct their work and revealing previously
unnoticed insights, and expressed interest in adoption across research
and engineering contexts. They would use KEditVis to “explore editing
schemes and evaluate edits in research, while using the knowledge
graph to detect errors and verify edits in engineering contexts” (ES).

Expert Reflections. First, the experts noted re-editing the iPod
manufacturer successfully improved NS and S metrics despite slight
decreases in RS and GE. They still acknowledged its effectiveness,
since different applications may prioritize various metrics differently.
Second, they speculated ranking chart patterns — reduced path crossings
in the latter layers and prominently singular high-probability tokens —
likely occur commonly when editing addresses LLMs’ lack of clear,
definitive information about specific topics.

5.3 User Study

We conducted a task-based user study to evaluate our system’s usability
with 12 participants (P1-P12), all proficient with LLMs. Six were
knowledge editing experts, three had basic understanding, and three had
no prior knowledge editing experience. None of them were involved in
the development of KEditVis or the expert interviews.

The user study consisted of three stages. The first stage was an
introduction, where the moderator presented background knowledge
and use cases of KEditVis to participants. The second stage required
participants to complete three different knowledge editing tasks, each
following the system’s workflow. The first and third tasks were derived
from the two usage scenarios described earlier, involving the editing of
iPhone manufacturers and Turing Award recipients, respectively, while
the second task focused on editing information related to U.S. presi-
dents. During this process, we encouraged users to think aloud [19]
about their analytical reasoning and select what they considered the op-
timal editing scheme at the end. In the third stage, we asked participants
to complete a System Usability Scale (SUS) [6] questionnaire using a

5-point Likert scale and conducted interviews with them. For detailed
task descriptions and questionnaires, please refer to the appendix D.

5.3.1

All participants completed all tasks successfully. Each participant tried
an average of 5.8 schemes per task. Participants gave a SUS score of
86.25, which exceeds the 80.3 threshold for the top 10% [6]. Based on
SUS factor research [29], we calculated usability and learnability scores
of 86.98 (Q1-3, Q5-9) and 83.33 (Q4, Q10), respectively. As shown
in the detailed results in Figure 6B, participants generally evaluated
the system’s usability and learnability positively. However, a few
participants found certain system features too implicit, noting that there
was “no explicit button for expanding and collapsing detailed results”
(P5), and that “some background knowledge needed to be learned, such
as the principles of layer selection methods” (P1, P5, P10, P12).

Quantitative Results
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Fig. 6: (A) Diagram of the set visualization we designed; (B) results of
the SUS questionnaire in the user study.

Post-hoc Analysis. We recorded the best editing scheme selected by
each participant for each task and compared their editing effects against
three baselines, using the same testing benchmark. Baseline I used
fixed layers from current mainstream knowledge editing methods [40],
while Baseline II used automated approaches to choose a layer selection
scheme for editing [25]. Baseline III first applied Baseline II’'s method-
ology to identify the six most suitable layer selection schemes, then
selected the optimal scheme from these candidates based on editing
performance. The reason for selecting these baselines is to demonstrate
that our interactive method is effective for editing and provides value
compared to both fixed-layer and automated layer selection approaches.

The comparison was conducted with Student’s t-test. The results
below revealed that the schemes selected by participants significantly
outperformed all baselines, with only a few instances showing the
same or comparable performance, thus confirming the effectiveness
of human participation in layer selections. While automated layer
selection methods do not achieve optimal results in all cases, human
decision-making can effectively compensate for their deficiencies.

Task 1.  Participant-selected schemes (M = 0.683, SD =
0.023) significantly outperformed Baseline I ((11) = 44.000, p <
0.001, mean difference MD = 0.293, 95% CI [0.279,0.308], d =
12.702) and Baseline II (#(11) = 11.000, p < 0.001, MD = 0.073,
95% CI [0.059,0.088], d = 3.175), while performing comparably to
Baseline III.

Task 2. Participant-selected schemes (M = 0.747, SD = 0.012)
significantly outperformed Baseline I (#(11) = 23.000, p < 0.001,
MD = 0.077, 95% CI [0.069,0.084], d = 6.640), Baseline II (#(11) =
11.000, p < 0.001, MD = 0.037, 95% CI [0.029,0.044], d =
3.175) and Baseline III (#(11) = 11.000, p < 0.001, MD = 0.037,
95% CI [0.029,0.044], d = 3.175).

Task 3. Participant-selected schemes (M = 0.692, SD = 0.034 in
RS; M =5.243, SD = 0.307 in GE) performed comparably to Base-
line I but significantly outperformed both Baseline IT ((11) = 7.231,
p <0.001, MD = 0.072, 95% CI [0.050,0.093], d = 2.087) and Base-
line I (¢(11) =7.231, p < 0.001, MD = 0.072, 95% CI [0.050,0.093],



d = 2.087) on metric RS. They significantly outperformed Baseline
I (z(11) = 6.813, p < 0.001, MD = 0.603, 95% CI [0.408,0.798],
d = 1.967), Baseline II (#(11) = 5.232, p < 0.001, MD = 0.463,
95% CI [0.268,0.658], d = 1.510) and Baseline III (#(11) = 5.232,
p <0.001, MD = 0.463, 95% CI [0.268,0.658], d = 1.510) on metric
GE, as well as performing comparably to all baselines on metric S.

Furthermore, we conducted a cosine similarity analysis between
pre-edit and post-edit hidden states, computed before t-SNE projection.
The results showed that all cosine similarities for models edited by
both baselines and participants are very close to 1 (>0.99), confirming
that the edits have negligible global impact on model performance (see
the appendix D.3). We also evaluated whether model outputs showed
semantic changes before and after editing by examining 1000 samples
in the drift view. The results showed that the outputs for most samples
did not change, with only a small number showing changes that mostly
preserved semantic meaning (see the appendix D.4).

5.3.2 Qualitative Results

We analyzed participants’ utterances from think-aloud and interview
sessions, as summarized below, to evaluate KEditVis’s effectiveness.

KEditVis effectively helps weigh and select appropriate layers
for editing (R2). Cosine similarity charts and ranking charts helped
participants make trade-offs and increased confidence in their choices.
Participants reported selecting layers where both charts showed over-
lapping trends, and excluded layers with short cosine similarity bars
despite high target token probability, or those with low target token
probability despite long cosine similarity bars. They also selected lay-
ers showing clear cosine similarity trends when target tokens (in the
ranking chart for the last token) had not yet reached high probability
values, as these layers represent a critical stage where knowledge rep-
resentations are forming rather than fully established. Editing at this
stage is often more effective than editing after knowledge forms.

KEditVis effectively helps analyze changes in the model before
and after editing (R2). Participants compared ground truth token
probabilities before and after editing, and probability changes between
old and new answers. When comparing pre- and post-editing ranking
charts, they observed that successful edits maintained consistency in
where the target token initially formed and its general trajectory. This
pattern could potentially indicate the toxicity of edits. Through compar-
ative visualizations, they also found minimal cosine similarity changes
in edited layers but significant changes in subsequent layers, which P2
and P7 attributed to greater involvement of related tokens.

KEditVis effectively helps compare and analyze different
schemes (R3). Participants reported they could confidently find excel-
lent editing schemes. When unable to distinguish among a few editing
results, they favored schemes with fewer layers while comparing cosine
similarities and token probability changes to support the final decisions.
They discovered that PS values were strongly influenced by the number
of key layers selected, and modifying middle layers readily impacted
NS scores, which PS5 attributed to middle layers’ coupling and converg-
ing information. Conversely, modifying later layers affected GE values,
as these layers organize language and prepare the final output.

KEditVis effectively presents editing results at both overview
and detail levels (R4). Participants found the system’s combination
of overall metrics and detailed displays useful since automated as-
sessments can be inaccurate. They examined detailed results when
noticing metric anomalies, and consulted detailed views when compar-
ing schemes with similar metrics for finer analysis. Text visualization
in the output comparison helps identify primary modifications. P2
discovered that editing different layers created distinct knowledge asso-
ciations, suggesting layer selections can consider where target tokens
and replacement tokens exist for a more comprehensive approach.

Additionally, all participants found the system-generated test
prompts satisfactory (R1), with only two participants (P2, P11) making
minor changes. Several participants (P6, P9, P12) spontaneously pro-
posed re-editing the best editing scheme in the third task to improve
a few metrics (RS5), aligning with our scenario I. Participants noted
the drift view was practical, flexible, and effective for assessing global
edit impacts (R6), and all indicated that no negative impact of the edits

on the model’s global performance was found. They also indicated
that due to the efficiency of knowledge editing itself, KEditVis’s com-
putational cost is far lower than traditional fine-tuning, with timely
system response (refer to the appendix E for details about runtime
cost). Although it requires certain human efforts for decision making,
it effectively helps analyze editing schemes and obtain useful insights.

6 DISCUSSION

Implications. First, our layer-based approach reveals hidden patterns
that advance knowledge editing research. Unlike traditional approaches
focusing only on algorithms and overall metrics, our interactive method
enables users to easily understand editing impacts, identify issues,
and design effective strategies through sequence analysis, compara-
tive analysis, and case-by-case examination. Second, our interactive
visualization helps users analyze and select editing layers, identify im-
perfect results, and perform effective edits. Automated methods have
limitations — the range automatically identified by minimum cosine
similarity values is not always optimal, and target tokens sometimes
do not appear in ranking charts. These limitations can be addressed
through human-in-the-loop intervention, enabling contextual judgment,
introducing domain expertise, and allowing nuanced decision-making
beyond automated metrics. Third, while previous research [24,25]
demonstrated the effectiveness of cosine similarity and token projection
approaches across datasets, our work revealed that relying on single
selection methods can be unreliable for certain instances. This finding
suggests combining various selection methods for different instances.

Generalizability. Our visual analytics approach is generalizable and
extends to different editing methods and LLMs, with our contributions
independent of specific editing techniques or LLMs. Our system sup-
ports different knowledge editing backends [55]. Local modification
methods — currently mainstream — may differ in algorithmic details
but all follow the locate-then-edit strategy and remain compatible with
our system. Our system is applicable to classical Transformer-based
LLMs, such as the GPT family. Knowledge editing methods inherently
support different LLMs because they operate on the fundamental ar-
chitectural components shared by most LLMs, without depending on
specific implementations [18,40]. Layer selection methods also utilize
the commonalities between different LLMs, supporting various LLM
architectures [24, 25]. In addition, our approach can extend beyond
knowledge editing, such as model distillation. Through visual compar-
ison, we can determine which layers contain critical knowledge that
should be prioritized for retention in distilled models.

Limitations and Future Work. First, due to human involvement,
it is difficult to measure whether KEditVis and the baselines invest
completely equivalent efforts in our user study, as there is currently
no approach to measure whether humans and machines invest equal
efforts. More refined quantitative comparisons can be conducted to
further enhance rigor in the future. Second, as the number of edited facts
and model layers increases, more schemes may need to be attempted,
leading to higher computational costs and user efforts. Future work
could explore efficient scheme recommendation methods. Third, future
work could compare different editing methods across LLMs to identify
optimal approaches and explore neuron-level editing for finer control.

7 CONCLUSION

This paper presents KEditVis, a novel visual analytics system for LLM
knowledge editing that helps users target appropriate model layers,
identify reasons for suboptimal edits, and improve outcomes effectively.
Comprising usage scenarios, expert interviews, and a user study, our
evaluation demonstrates its effectiveness and reveals valuable insights.
As knowledge editing has become an active research area, this work
addresses current workflow limitations through an interactive approach,
contributing to the advancement of knowledge editing methodologies.
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