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Figure 1: ViseGPT automatically extracts test cases from the user’s prompts for efficient and accuracy debugging.

Abstract

Large language models (LLMs) enable the rapid generation of data-
wrangling scripts based on natural language instructions, but these
scripts may not fully adhere to user-specified requirements, ne-
cessitating careful inspection and iterative refinement. Existing
approaches primarily assist users in understanding script logic and
spotting potential issues themselves, rather than providing direct
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validation of correctness. To enhance debugging efficiency and opti-
mize the user experience, we develop ViseGPT, a tool that automat-
ically extracts constraints from user prompts to generate compre-
hensive test cases for verifying script reliability. The test results are
then transformed into a tailored Gantt chart, allowing users to intu-
itively assess alignment with semantic requirements and iteratively
refine their scripts. Our design decisions are informed by a forma-
tive study (N=_8) that explores user practices and challenges. We
further evaluate the effectiveness and usability of ViseGPT through
a user study (N=18). Results indicate that ViseGPT significantly
improves debugging efficiency for LLM-generated data-wrangling
scripts, enhances users’ ability to detect and correct issues, and
streamlines the workflow experience.

CCS Concepts

« Human-centered computing — Natural language interfaces;
Information visualization; User interface programming; « Software
and its engineering — Software testing and debugging.
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1 Introduction

Data wrangling is a process of making raw data suitable for use and
analysis [33]. Due to the complexity of data wrangling processes,
one common approach is to write custom scripts to perform data
cleaning and transformation operations. With recent advances in
large language models (LLMs), these data wrangling scripts can
be easily generated based on the given instructions, substantially
lowering the barrier for less-experienced users to complete complex
data wrangling tasks [41, 43, 56, 84]. However, LLM-generated
scripts often raise reliability concerns, such as latent defects [6, 50],
hallucinations [26, 31], ambiguities [35, 51], and mismatches with
user requirements [32, 48], which demand effective approaches to
assist users in reviewing and validating these scripts before use.

To help users understand and validate data wrangling scripts,
some efforts have been made, such as displaying the script transfor-
mation pipeline [79] and directly assisting users in comprehending
the input and output space of the scripts [47]. Recent works im-
prove understanding of LLM-generated scripts by introducing tools
that represent the inherent data transformation process, including
visualizing the behavior of real-time generated scripts as a tree
diagram [77] and supporting nodes querying for the operation de-
tails [19]. However, users are still required to manually validate
whether the LLM-generated scripts can execute correctly and fulfill
task-specific requirements. Our formative study further reveals
that users often do not seek a comprehensive understanding of the
script itself, but rather a direct way to evaluate whether the script
aligns with their requirements.

In this paper, we aim to improve the alignment between users’
instructional prompts and LLM-generated data wrangling scripts
and facilitate efficient verification and maintenance of the func-
tional correctness of these scripts. Inspired by the unit testing ap-
proach [64, 73], we propose ViseGPT, a tool that uses automatically
generated test cases based on given prompts to assist users in vali-
dating LLM-generated data wrangling scripts.

However, leveraging the unit testing approach for LLM-generated
data wrangling scripts presents three key challenges:

o First, generating test cases that accurately reflect user require-
ments from natural language prompts is non-trivial. User prompts
often contain implicit information and domain-specific knowl-
edge that are difficult to extract. For example, a prompt like
“remove outliers from the sales data” may imply statistical rules
(e.g., excluding negative values) that are not explicitly stated. Tra-
ditional unit testing relies on precise specifications, but natural
language prompts are inherently ambiguous, making automated
test case generation prone to misinterpretation.

e Second, validating whether the generated script fully complies
with the prompt requires more than simple input-output com-
parisons. Unlike conventional programming where expected
outputs can be predefined, data wrangling tasks often involve
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complex transformations where intermediate steps influence
correctness. Existing testing frameworks focus on functional cor-
rectness at the ends but lack mechanisms to assess higher-level
semantic alignment with user intent.

o Third, guiding users in refining scripts based on test failures
demands an interpretable feedback mechanism. When a script
fails to meet certain conditions, users need actionable insights
to adjust the script. However, with limited contextual informa-
tion, users have to manually trace issues according to data flow.
This becomes particularly challenging for less-experienced users
who may struggle to map test failures back to the original re-
quirements or identify missing edge cases. Without structured
guidance, iterative improvement devolves into a trial-and-error
process, reducing efficiency gains.

To address these challenges, we developed ViseGPT, a tool that
generates test cases based on user prompts, presenting test results
within an interactive visualization interface centered around a tai-
lored Gantt chart [76] and supporting iterative sending of expanded
prompts for ideal results. Specifically, the system incorporates an
analysis model that can extract constraints about LLM-generated
data wrangling scripts [47] from users’ natural language prompts
and process these into systematic test cases, which are then auto-
matically run against the LLM-generated scripts to validate their
correctness. This constraint-based approach allows ViseGPT to
evaluate whether generated scripts semantically align with user
requirements. The test results are presented through an intuitive
visualization interface featuring a tailored Gantt chart that lever-
ages symbolic representations of column data transformations and
color-coded test status indicators, enabling users to quickly grasp
script behavior and identify issues. Furthermore, the interactive
interface supports deeper exploration, allowing users to examine
detail data at each processing step, review associated test cases
and make custom adjustments to existing constraints. To integrate
with the test framework, ViseGPT allows users to refine scripts
by feeding test reports back into the LLM as expanded prompts
for improved script regeneration. This closed-loop system not only
helps users verify functional correctness of scripts but also provides
actionable feedback for continuous programming improvement. We
further evaluate ViseGPT through a user study (N=18), showing
improvement and inspiration in debugging LLM-generated data
wrangling scripts efficiently and accurately.

2 Related Work

We review LLM-assisted data wrangling script generation, unit test
validation, and human-LLM interactive interface design, which are
closely related to our study.

2.1 LLM-generated Data Wrangling Scripts

Data wrangling often involves dealing with large volumes of in-
tricate data and varying scripts tailored to different scenarios [17,
49, 68]. Traditionally, the approach requires users to have pro-
gramming skills to complete the task. Within the data analysis
workflow, this is a tedious and error-prone task that can consume
up to 80% of a worker’s time and effort [12, 34, 47]. Facing these
issues, researchers are enthusiastic about using an LLM agent in
data wrangling script programming to reduce the learning barrier
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and improve efficiency [3, 24, 59]. In the HCI community, there is
a long history of assisting users in understanding, validating, and
refining data wrangling scripts [7, 39, 52, 54, 85].

However, it is impractical to expect these native LLM agents to di-
rectly produce correct and user-demand-satisfying data wrangling
scripts due to the inherent ambiguities in natural language [35, 51]
and the mechanisms of the large models themselves [26, 31, 32, 48].
By taking advantage of the LLM agent itself, some works can ef-
fectively help users obtain more accurate data wrangling scripts
[10, 40]. In conclusion, current improvement strategies focus on
three aspects that display the data transformation process, cus-
tomize prompts, and backtest generated results.

Displaying the process of data transformation. In the con-
text of data wrangling, it is common to use a script to progressively
process one or more tabular data objects [12]. Displaying the de-
tailed changes in the data at each step can help users understand the
script’s logic and assist in debugging. For example, in XNLI by Feng
et al. [19], users can query nodes during the data transformation
process. In WaitGPT [77], the script is dynamically updated in a
tree structure, providing real-time visualization of the transforma-
tions. And in Wrangler [34], the system allows users to directly
manipulate the individual steps in the data transformation process.
Through reasoning and inspection, users can obtain the logical
chain of the script, but this approach remains insufficiently intu-
itive to present the functional correctness of scripts. When dealing
with more complex scripts, users need significant analytical skills
to identify issues within the script.

Customizing prompts. For LLMs, specific and well-structured
prompts can reduce the degree of freedom in generation, thus im-
proving the accuracy of the results [42]. In Dango [8], users clarify
their intent by answering multiple-choice questions posed by the
LLM, and receive multiple forms of feedback to aid evaluation,
thereby enhancing user communication. In the work by Liu et al.
[44], users can opt to break down tasks and input prompts step by
step when the LLM-generated results are not satisfactory. And in
ColDeco [20], users can decompose a generated solution into inter-
mediate helper columns to understand how the problem is solved
step by step. Furthermore, in DIY [57], a sandbox is provided for
users to interact with information about queries and a subset of the
database, in which end-users can evaluate the system’s response.
Clearly, rich and structured prompts can lead LLMs to generate
more demand-satisfying data wrangling scripts. However, this ap-
proach increases the cooperating burden on users to preprocess
and structure their prompts.

Backtesting the generated results. To validate script correct-
ness, data test sets can be generated based on the prompt or the
predefined functionality of the code. Upon obtaining the test re-
sults, the report can be provided to the user, or automated iterative
modifications can be performed until the accuracy reaches a prede-
fined threshold. In SpoC [36], the system predicts the program line
responsible for the failure and focuses the search on alternative
translations of that pseudocode line. Additionally, CodeScore [15]
implements an approach to assess code generation by predicting
code execution. The quality of the dataset is fundamental to tradi-
tional unit testing methods. If the test case scale is too small, it may
fail to cover edge cases, while an excessively large validation set
will require substantial time for repeated script executions [23]. But
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this approach can be used to align scripts with user requirements
and provides valuable insights.

2.2 Unit Testing for Script Validation

Unit testing refers to the process of testing individual hardware or
software units or groups of related units [29]. In practice, develop-
ers insert assertions [1, 60, 75] or logical statements within code
segments [2, 78] to verify whether the program’s execution matches
their expectations. These assertions are crucial for identifying is-
sues early in the development phase. To improve efficiency and
broaden test coverage, researchers have explored methods for auto-
matically executing unit tests. The goal is to achieve comprehensive
coverage of all possible scenarios while maintaining clarity and ease
of understanding, thereby facilitating effective quality assurance
and debugging processes [21, 30, 80, 82, 86]. This challenge extends
to the evaluation of LLM-generated outputs, where assertions must
validate not only functional correctness but also alignment with
implicit requirements in natural language prompts, which is a core
concern in prompt engineering and evaluation research [66].

In the context of data wrangling, unit test generation can be
more targeted. By extracting descriptive information about target
scripts from user prompts, assertions can be set to verify script
correctness [83]. However, in practice, users typically require di-
rect validation of statistical properties (e.g., range ordering) rather
than exact data comparisons. To enhance flexibility and structural
integrity, the concept of constraint solving can be introduced into
the test suite framework. Constraints are extensively utilized across
various fields, including software engineering, visualization, and
databases, to restrict the possible values of variables, thereby repre-
senting partial information about those variables [5]. In constraint
programming, unknowns, such as variables, are expressed through
a series of constraints, and any solution must satisfy all the restric-
tions of these constraints [55]. Constraint programming standard-
izes knowledge representation, enabling users to model domain
expertise as high-level expressions.

LLMs have demonstrated potential in generating unit tests with
high coverage [9, 25, 74, 80]. When using an LLM agent, users
usually provide a natural language prompt that both describes
their requirements and acts as a specification for the desired script.
This dual role of prompts necessitates methods to extract explicit
and implicit conditions, echoing Shreya Shankar et al’s work on
aligning evaluations with human needs [66], which can also be
involved in the context of LLM-generated script debugging. An
analysis program based on LLMs can extract the expected output
criteria from the prompt [27, 87], which is then used to evaluate
the functional correctness of the generated scripts. By comparing
the actual outcomes with the test cases, the analysis ensures the
scripts align with user specifications and performs as intended. This
process enhances both the flexibility of the mechanisms and the
alignment between scripts and user prompts.

2.3 Advancing Uls for Human-LLM Interaction

In the midst of rapid advances in LLMs, the HCI community has
made significant strides in enhancing human-LLM interaction, sur-
passing common chatbot dialogues and basic API interactions.
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Similar to our efforts to facilitate comprehension and verification
of generated content, several studies focus on accelerating users’
ability to understand and validate LLM outputs efficiently [14, 46].
For instance, VIME [11] enables users to more efficiently under-
stand and validate the outputs of sequential ML models. Our work
centers on emerging scenarios where LLMs generate and debug
data analysis scripts. We introduce features such as code scroll nar-
ration, streaming validation of code correctness post-generation,
and step-by-step navigation through data transformation processes.

Additionally, other research explores innovative visual repre-
sentations and interactive designs for LLMs beyond traditional
single-text prompts. For example, Xie et al. [77] use interactive tree
maps to assist in understanding. Advanced interactive applications
using LLMs have been explored in areas such as educational analyt-
ics [71], visualization generation [81] , and anxiety mitigation [38].
SHAPE-IT [62] highlights the ability to facilitate rapid ideation
of a wide range of creative behaviors with Al Following similar
principles, our work enables users to interact with intermediate
visualizations, allowing real-time refinement and modification of
generated code. This provides a more intuitive and fine-grained
control over LLM outputs, enhancing usability and effectiveness.

3 Formative Study

We conducted a formative study (N=8) to gain a better understand-
ing of how users debug the LLM-generated data wrangling scripts
and inform the design considerations.

3.1 Setup

Recruitment & Screening. We posted recruitment advertisements on
university forums and social media. Candidates were required to
complete a questionnaire to provide their basic information and
relevant work experience. We pre-screened volunteers who had
experience using LLM-powered tools to generate data wrangling
scripts for our interviews.

Participants. We recruited 8 participants in total (P1-P8), with 2
females and 6 males, aged 20 to 30 years. Specifically, there were 4
postgraduate students whose daily research involves data analysis
work (P1-P4), 2 undergraduate students majoring in Computer Sci-
ence and Technology (P5-P6), and 2 data journalists who perform
daily statistical reporting (P7-P8). All participants have prior expe-
rience in debugging data wrangling scripts generated by LLMs and
correcting issues within these scripts. Given the varying levels of
expertise they possess in programming skills and debugging such
scripts, this allows them to provide rich and diverse perspectives
from different angles.

Interview. First, we asked participants to describe their experi-
ences using LLMs to generate data wrangling scripts, including the
specific scenarios in which they applied these tools. In addition,
participants were requested to bring chat history from real work
scenarios where they had requested LLMs to generate data wran-
gling code but found the output to be suboptimal. We explored
how they identified issues within the scripts, performed diagnostic
analyses, and ultimately corrected the errors. Each participant was
compensated with $10/hour. The formative interviews lasted 20-40
minutes. All interviews were audio-recorded.
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Analysis. Following thematic analysis methods, we first set up
three key topics of inquiry. These areas focused on the work-
flows, specific requirements, and common challenges faced by in-
terviewees when debugging and modifying LLM-generated scripts.
To gather comprehensive insights, we combined participants’ re-
sponses to a series of questions with information obtained through
guided discussions during the interviews. By incorporating real-
world examples and practical solutions from these discussions, we
were able to systematically organize our findings and gain deeper
insights. This approach enabled us to effectively guide the design of
our system, ensuring it addresses the diverse needs and workflows
identified through our analysis.

3.2 Findings

In the following, we present a thematic summary of the key points
in the interview research results.

3.2.1  For what tasks do users frequently rely on LLMs in generating
data wrangling scripts, and how do these tools perform?

Participants recognized that, for simple tasks, conversational
LLM agents offer a significant advantage in enhancing the effi-
ciency of generating data wrangling scripts. They have experience
using LLMs to generate such scripts across various task scenar-
ios, including scientific research (6/8), routine learning tasks (4/8),
machine learning training (2/8), business analytics (2/8), and inves-
tigative journalism (2/8). “Nowadays, whenever I face simple and
highly repetitive data wrangling tasks, I opt to use LLMs to handle
them swiftly. This allows me to allocate more time to other meaning-
ful endeavors.” (P7) With the assistance of LLMs, end users need
only describe their task requirements to receive responses in the
form of code along with functional reports. This feature has been
particularly well received by users with less programming expe-
rience. ‘T have limited programming experience in data wrangling,
and the LLMs allow me to obtain a usable script without learning
programming specifically.” (P6)

However, participants noted that, in complex scenarios, the effec-
tiveness of conversational LLM agents in generating data wrangling
scripts may not be promising. When the volume of requirements
increases or tasks require deeper analysis, LLMs often produce
scripts that either do not meet the task requirements or contain
syntactic errors. P8 stated, “When tasks require deep thinking, using
LLMs often results in errors, which can make the efficiency of using
them lower than if I were to write the code myself directly.” Most
participants (7/8) stressed that it is unrealistic to expect LLMs to
generate correct and usable data wrangling scripts in a single round
of dialogue in specific scenarios. Instead, issue analysis and script
refinement are necessary.

3.2.2  Howto identify issues in LLM-generated data wrangling scripts?

Generally speaking, after obtaining an LLM-generated script, the
interviewees may go through the following two phases: First, they
verify the script’s usability. Second, upon discovering any issues,
they have to assess the source of these problems. (Table 1)

Verify Usability. After obtaining initial scripts, most partici-
pants (7/8) conduct preliminary syntax and format checks on the
scripts output by LLMs, leveraging their experience to visually in-
spect for any obvious issues. More experienced participants (4/8)
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Table 1: Methods for debugging LLM-generated data wran-
gling scripts and their limitations in practice.

Main Limitations

Debugging Methods

Initial Script Review Experience-dependent and diffi-
cult to detect deep logic flaws.
Inadequate edge case coverage
and challenging validation.
Information overload and time-
consuming for scope narrowing.
High learning curve and complex
environment setup.

May introduce new issues and is
inefficient.

Test Dataset Execution
Segmented Print Output
Local IDE Debugging

LLM-based Correction

can often determine whether the script meets the simple require-
ments by just reviewing it. However, they unanimously agreed
that direct observation is not reliable and should only serve as a
pre-processing step, requiring additional methods for thorough ver-
ification. “While monitoring the LLM’s streaming output, I sometimes
terminate responses mid-generation when spotting issues and restart
the conversation. Though this helps catch early issues, it remains an
inadequate solution overall.” (P1) Subsequently, participants may
delve deeper through further dialogue with the LLM (3/8) or by
switching to a local coding environment (5/8). The most straightfor-
ward method to test if a script is usable is to run it on a test dataset.
Most participants (6/8) chose this approach to verify whether the
script has compilation errors or fails to meet their requirements.
However, P2 pointed out the data scale dilemma inherent in this
method: “When I test with a small dataset, it might not cover all edge
cases of the specific scenario. When using a large dataset, the volume
of output results becomes too heavy to easily validate correctness.”
Participants (3/8) noted that they might not be able to fully deter-
mine the script’s correctness just by examining the output results
because of concerns about uncaught situations.

Locate and Debug Issues. Merely verifying the usability of
a script may not suffice. Most participants (6/8) found that sim-
ply describing observed anomalies to LLMs often does not lead
to accurate understanding and resolution; it can even misdirect
efforts. “Categorizing the types of problems and narrowing down the
scope of modifications greatly enhances the effectiveness of LLMs.”
(P5) To reduce the effort of debugging, participants opted to an-
alyze the source of issues themselves and focus on specific code
segments. Throughout this process, reviewing variable information
during script execution proved invaluable for analysis. Participants
employed various methods, such as segmenting notebooks (5/8),
directly printing outputs (6/8), and using IDEs to inspect register
values (3/8), to trace the process. “In Python, printing several rows
of a table is a common and efficient way to preliminarily verify if the
script functions correctly, but this method might miss issues in subse-
quent rows.” (P2) Furthermore, scripts generated by LLMs may not
align with users’ coding preferences. Participants (2/8) mentioned
encountering overly complex single-step code generated by LLMs,
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which complicates debugging. Most participants (7/8) agreed that
simpler, clearly segmented code is much easier to debug.

3.2.3 What challenges have been encountered when resolving issues
in LLM-generated data wrangling scripts?

Three themes emerged when participants described their own
difficulties in modifying the scripts.

Debugging by fully checking output data is difficult and
tedious. Participants (6/8) pointed out that executing scripts on
a test dataset and then checking the output data for debugging is
a practical approach. But the manual assess methods mentioned
above place high demands on users’ capabilities. Some participants
(4/8) noted that verifying the correctness of data transformations
and ensuring that the generated scripts produce accurate results
are tedious and error-prone tasks. “Checking the output (data re-
sults) from the generated script cell by cell is cumbersome.” (P4) To
address this, participants (5/8) suggested aggregating data results
(e.g., calculating the mean and median of a column of data) or print
out a small sample of the data (e.g., the first five rows of a data
table) during the execution process to form reports as a way to
reduce complexity and alleviate the burden caused by large data
scales. However, some participants (3/8) expressed concerns that
this approach does not have enough representation to describe data
entirely, so it does not reliable when assisting in script modification.

Modifying hampered by limited programming skills. Al-
though LLMs can provide clear annotations to explain each step,
participants (8/8) still found modifying the generated code challeng-
ing. On one hand, LLMs may use unfamiliar packages or advanced
syntax, making adjustments difficult. “Sometimes there are functions
Idon’t recognize or long statements with deeply nested structures, and
even after consulting documentation, I still can’t figure out how to
correct them.” (P3) On the other hand, addressing issues introduced
by LLMs often requires both meticulous attention and program-
ming experience. ‘It’s common to misjudge the source of a problem,
which leads to incorrect modifications, wasting time and effort and
potentially causing additional issues.” (P1) Even with LLMs, develop-
ers still struggle with making effective modifications, particularly
when dealing with intricate logic or unfamiliar constructs.

Refining iteratively and identifying hard-to-detect hallu-
cinations. Most participants (7/8) also opt to engage in further
dialogue with LLMs to iteratively refine the script, when manual and
simple modifications are insufficient. Unfortunately, this process
requires significant effort to communicate the nuances of the de-
sired analysis outcomes and carefully avoid introducing new errors.
In the scenario of introducing iterative dialogue, participants (3/8)
have encountered instances where LLMs amplify hallucinations,
leading to an increase in script errors. “The agents may misinterpret
my intended data wrangling steps that are not syntactically valid, or
suggest using functions that do not exist in the given context. These
errors sometimes accumulate recursively and are difficult to detect.”
(P6) Consequently, most participants (6/8) are reluctant to fully
rely on LLM-generated results and also use local environments for
debugging. However, even with this approach, they still often find
themselves caught in iterative cycles, spending more time iden-
tifying and resolving emerging issues, or having to abandon the
current conversation history and start a new dialogue.
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3.3 Design Considerations

In our formative study, all participants expressed significant interest
in incorporating LLMs into their workflow to generate and debug
data wrangling scripts. Our design goal is to help users quickly
verify the reliability, identify issues, and correct discrepancies in
the LLM-generated data wrangling scripts. To achieve this, we
propose the following design considerations (D1-D5) to guide the
design of the system.

D1. Automatically generate scripts and corresponding test
cases for reliability detection based on natural language
prompts. After issuing requests to LLMs, there is a risk that the
generated data wrangling scripts may contain issues, so debugging
these scripts is a necessary step. “Having an integrated tool to assist
in debugging after generating the script (with LLMs) would greatly
help maintain task coherence and improve work quality.” (P4) Auto-
matically translating implicit information within natural language
prompts into test cases for reliability detection can significantly
enhance work efficiency.

D2. Execute unit tests, and provide an overview of test
results and data transformation progress with intuitive visu-
alization. Unit testing is an effective and low-threshold method
to ensure the reliability of scripts. The model should be designed
to perform systematic and high coverage verification. However,
even after extracting test points from the prompts and performing
automated detection, understanding test information in constraint
form and interpreting complex test results can still be challenging
for users. To address this, a visualization approach can be intro-
duced, aimed at intuitively summarizing test outcomes. This method
should be designed to effectively present structured, step-by-step
information, aiding users in comprehending data transformations
within scripts. By making error propagation more transparent, it
helps users identify the key points in the execution process where
failures occur, ultimately supporting more efficient debugging.

D3. Allow users to examine the details of the data for a
specific step and customize the test set. In addition to providing
an overview of test results, the system should also support viewing
and modifying detailed information at any stage. Examining the
data details of a specific step in the script, similar to breakpoint de-
bugging, is a common practice in existing workflows and is highly
beneficial for analyzing the issues. Furthermore, based on our auto-
matically generated test cases, users may want to make additional
customized modifications to support further testing. The system
needs to allow for adding or modifying existing test cases.

D4. Support script modification based on test reports. Based
on our formative study, we found that users often choose to send
both the compiler error messages and the script to LLMs during
local compilation and debugging. This method is straightforward
and effective. Including test results in the prompt provides the LLM
with detailed insight into the problem. These contexts, such as
error messages, help the LLM better understand the issues and
identify the root causes, allowing for more targeted and precise
suggestions to solve the problems. Inspired by this workflow, in our
testing framework, if users want to debug a script, we should allow
users to send the test results as part of the prompt to the LLMs for
analysis and problem resolution, in addition to performing manual
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modifications and providing more natural language descriptions
about their requirements.

D5. Integrate with existing data wrangling workflows seam-
lessly. Current approaches often lead to a disconnected workflow
that disrupts the natural flow of data wrangling tasks. For instance,
users may need to switch between different platforms to debug code,
which can cause mental context-switching and break the continuity
of their work. Our design tries to reduce these issues by keeping
everything within a cohesive workflow. We can embed elements di-
rectly within the response box in the conversational user interface
(CUI), allowing users to stay focused on their script and analysis
without unnecessary interruptions. To ensure seamless integration
with the existing design, our visualization elements and interaction
designs are embedded within the response box, maintaining logical
consistency with the original output information.

4 ViseGPT

Based on user interviews, ViseGPT should address users’ need for
an efficient, low-barrier approach to debugging LLM-generated data
wrangling scripts. The system comprises three core components:
(1) Automated Test Generation and Execution: ViseGPT automati-
cally extracts output constraints from natural language prompts,
processes them into test cases (D1), and conducts unit testing (D2);
(2) Workflow Integration and Visualization: To ensure compatibility
with existing data wrangling workflows (D5), the system supports
unit test customization and provides detailed data visualization
(D3); (3) Closed-Loop Iteration: Test reports are automatically repur-
posed as enhanced prompts for the LLM code agent, forming an
iterative debugging loop (D4).

4.1 Usage Scenario

Mary, a marketing specialist at a retail company, intended to ana-
lyze sales data across various quarters and regions after processing
the original dataset. Although LLMs offer rapid script generation
capabilities, the reliability of their output for precise data wran-
gling requirements remained a concern. She opted to use ViseGPT,
a conversational debugging tool designed for LLM-generated data
wrangling scripts. After describing her data wrangling require-
ments in natural language, ViseGPT generated a Python script and
executed comprehensive unit tests, displaying the results in the
tailored Gantt chart (Figure 2 B2). In the Gantt chart, each column
represented an output data column, while each row aligned with
the output script step. By observing the summary rows at the bot-
tom (Figure 2 F1), Mary found that some columns in the output
data failed to meet the testing criteria, so she decided to inspect the
script in detail to resolve the issues.

Exception issues due to type coercion. Mary first reviewed
the tailored Gantt chart (Figure 2 B2) for the script. She identi-
fied a series of issues that could be traced back to the Amount col-
umn in the overview (Figure 2 F2), which subsequently propagated
through to the Cumulative Sum, Price, Price Comparison, and
Normalized Amount columns. To address the root cause, she ini-
tially focused on the Amount column in Step 1 by clicking on its
corresponding rectangle in the Gantt chart (Figure 2 F3). Upon
inspection, she found that the input data had type issues. After
applying a filter, Mary discovered that all the data failing the tests
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,Q\ A retail company wants to analyze its sales data across different regions to better understand sales trends and customer purchasing behavior. Please generate a Python data processing script that reads a file named data.csv,
which contains the following columns: ID, Amounti(where ~ denotes an approximate value, unit: ten thousand units), Date, Category, Region, and OriginPrice. The script should perform the following operations: Preprocess
the Amount column, compute its cumulative sum, and calculate Price as Amount * 3./Assign a High or Low label to each record based on the Category column and compute the average Amount for each Region. Determine
the season for each record based on the Date column. Compare the OriginPrice and the new Price in a new column. Normalize the Amount values and group them accordingly. Save the processed data as cleaned_data.csv.
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Certainly! Below is a Python script that performs the tasks you described, along with a generated TestDataSet [ datacsy o L
CSV file required for the script to run. Columns
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The original script could not properly process data with prefix '™ in Amount L

Figure 2: A screenshot of the ViseGPT user interface. After users send a prompt to ViseGPT (A), the response content in the
reply box (B) is organized into three components: (B1) A script view similar to those in common LLM-based code agents; (B2) A
tailored Gantt chart providing an overview of test results; (B3) A detail view displaying the test case list and detailed data for
one column at one step. Users can resend prompts for script iteration (C), with the option to attach test reports (C1).

3

contained the “~” prefix in the Amount (Figure 2 F4), used to denote
approximate values (Figure 2 F5). This format was incompatible
with the float type expected in subsequent operations. However, di-
rectly forcing type conversion could result in invalid values. There-
fore, it was necessary to strip prefixes while retaining the numerical
value (for example, converting “~50” to “50”).

Then, in Step 2, she observed that the output did not satisfy the
test case of having no missing values in the column (Figure 2 E).
It became evident that the initial failure to properly handle the
non-float formatted data led to anomalies during type coercion in

pd. to_numeric(datal 'Amount']) , resulting in missing values. The
missing values subsequently propagated through dependent cal-
culations, affecting the Cumulative Sumand Price computations
with incorrect results.

After identifying the source of the issues, Mary sent ViseGPT the
relevant information (Figure 2 C), including details about the failing
test case (Figure 2 C1) and the requirement to remove the prefix
while retaining the floating-point numbers. In the newly generated
script, preprocessing steps were added to handle the format of the
Amount, resulting in a reduction in the number of test issues.

Table Data Column Date @ [7] Original Script
Step  Step8  Category = Format Amountcroup iy
@ data[’Amount Group’] = pd.cut(datal’Amount], ... )
[*] Md{4}\d{2}\d{2} |
@ [ Send Prompt to ViseGPT
E 1 | 2025-01-15 1 | 2025-01-15 =+ The grouped column is incorrect dk
2 | 2022-02-20 |==| 2 | 2022-02-20 _
3 | 2023-10-03 3 | 20231003 | @ (21 Modified Script
4 | 2023-04-18 4 | 2023-04-18 Amount Group Normalized Amount
5 | 2024-11-20 5 | 2024-11-20 data['Amount Group'] = pd.cut(data['Normalized Amount], ...)

Figure 3: Two issues in the usage scenario. (A) Format issues
that require expanding the test case. (B) Exception issues
arising from grouping by incorrect column.

Format issues that require expanding the test case. Subse-
quently, Mary started analyzing the Date column issues identified
in Steps 8 and 9 (Figure 2 F6). By clicking on the rectangles cor-
responding to these steps, she examined the list of test cases in
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the detail view and identified that the errors were due to format
mismatches during validation (Figure 3 A).

Upon reviewing the prompt, Mary realized that she had not ex-
plicitly specified the expected date format for the Date. As a result,
the automatically generated test cases used “\d{2}-\d{2}-\d{4}" as the
default format for validation (Figure 3 A1). However, when the data
was processed in pd.to_datetime(datal'Date'], format="mixed") ,
it was converted to the \d{4}-\d{2}-\d{2}" format, causing discrepan-
cies between the test cases and the processed data. To resolve this
issue, Mary directly modified the test case content to align with
the \d{4}-\d{2}-\d{2}’ format (Figure 3 A2). Then she reran the tests
(Figure 2 G) and confirmed that the issues were resolved.

Group label issues arising from grouping by incorrect col-
umn. After adjusting the test cases and rerunning them, Mary
turned her attention to the issues in the Amount Group column in
Step 12 (Figure 3 B). This column was supposed to be a label column
that categorized the normalized Amount values into groups based
on their magnitude. However, when examining the tailored Gantt
chart, she noticed that the grouping was incorrectly being per-
formed on the original Amount column instead of the Normalized
Amount (Figure 3 B1).

Upon inspecting the specifics of the Amount Group in this step,
Mary found that it contained missing values. To investigate further,
she clicked the magnify button (Figure 2 E1) in the top-right corner
of the detail data view for a more detailed look. She found that the
original Amount column was being used as the basis for grouping,
which caused most values — that is, those greater than 1 — to fall
outside the expected normalized range. As a result, these values
could not be properly grouped, leading to missing values in the
Amount Group column. To address this issue, Mary uploaded the
test results and the requirement to ViseGPT (Figure 3 B2). Following
her submission, the grouping column was correctly modified to
Normalized Amount (Figure 3 B3). Finally, the script passed all the
test cases, and Mary got a script that exactly matched her prompt.

4.2 Generating and Executing Test Cases

With the assistance of LLM, ViseGPT can automatically derive out-
put constraints from natural language prompts and processes them
into test cases for unit test execution. In another work on data
wrangling scripts, Ferry [47], there is already a relatively compre-
hensive summary of the classification of data constraints. Building
on this, besides Type, Format, Range, Order and Exception (i.e.,
Missing Value in Ferry), ViseGPT’s classification framework has
also undergone certain adjustments:

e Unique verifies that each value in the column appears only once
(e.g., an ID column used as a primary key).

o Forbidden Value requires that certain specific values must not
appear in the data.

e Relation describes the dependencies between columns and is
further elaborated based on the different data types involved.
For example, common equality relationships, magnitude rela-
tionships for Integer/Float data (e.g., greater than/less than), and
substring/superstring relationships for Character data. Besides
these basic relation categories, we enable the use of natural lan-
guage labels to flexibly describe more complex dependencies.
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Under the aforementioned constraint classification framework, the
analysis program can extract user requirements from the prompt
for subsequently testing the generated script.

To evaluate the correctness of data wrangling scripts generated
by LLMs within our constraint framework and to demonstrate the
changes in data correctness throughout the script flow, it is neces-
sary to separate the scripts step-by-step. Then ViseGPT generates
test input datasets that meet the prompt requirements and script
variable parameters, and systematically match output data results
with test cases. Finally, ViseGPT summarizes the test results.

Separating the Scripts Step-by-Step. After sending the user’s natu-
ral language instructions to LLM embedded in ViseGPT, the system
generates the corresponding data wrangling script. ViseGPT can
then break down the script into a series of atomic steps forming
a chain and ignore any redundant or unnecessary repetitive steps
(e.g., steps like print and assert that do not affect the data). The
system will use AST parsing based on Python syntax to extract the
input-output elements (i.e., tables and columns) from each atomic
step, aggregate and collect them for subsequent visualization.

Constraint Matching Testing. ViseGPT executes test datasets
through LLM-generated data wrangling scripts to verify if each
step’s output meets the specified constraint test cases. Users can
choose to upload their own test datasets, and the system will also
generate a dataset that aligns as closely as possible with the task
description based on the user’s prompt. During the testing process,
a static match will first be conducted to determine whether the
output data follows the basic test cases. For instance, during Type
inspection, regular expressions can be utilized to ensure that the
data format matches specified characteristics; for Range testing,
checks are performed to ascertain whether numerical values or
string lengths fall within designated intervals. To achieve suffi-
cient coverage, ViseGPT also supports testing with LLMs in the
categories of Format, Forbidden Value and Relation. Besides
employing static matches, we also leverage natural language de-
scriptions for constraints, utilizing LLMs to assess whether the
output data conforms to these described requirements.

4.3 Visualizing Unit Test Flow

After test execution, in order to create an intuitive overview of the
test report for locating the source of issues and assisting debugging,
it is essential to use an appropriate method to visualize the script’s
data transformation process. Our design considered table and tree
alternatives that leverage different structures to encode data flows,
but the feedback received in iterative progress showed that tables
obscure temporal dependencies while trees lack intuitive flow rep-
resentation. In contrast, Gantt charts offer a stronger balance of
information density, temporal clarity, and workflow mapping, with
particular advantages in summarizing process information [63],
making them well-suited to our application scenario. Hence, a de-
sign based on Gantt charts is introduced in ViseGPT, following a
user-centered development process that has been iteratively refined.
In this framework, shape and color coding are used to generalize the
test results, with an “aligned-to-line” design that segments scripts
at the granularity of individual steps to align Gantt chart rows with
LLM outputs side by side, helping users validate generated code.
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Figure 4: ViseGPT Workflow. (A) Test Case Generatorgenerates test cases based on data constraints extracted from users’
prompts; (B) Reliability Validator executes the data wrangling scripts generated by the LLMs code agent, matches the output
data results with test cases, and produces test reports; (C) Script Refiner can iteratively modify scripts by sending test reports,
natural language instructions, and data examples as prompts to LLMs.

Visualization of the data transformation process. In Section 4.2,
during unit test execution, ViseGPT has already separated the
scripts step-by-step, simplifying the script content and extracting
the main operations that impact the test results. Next, a tailored
Gantt chart is applied in ViseGPT to visualize the script execution
process, facilitating clear presentation of test results. The step ID is
shown on the left, aligning with the corresponding lines of scripts
to create an intuitive visual mapping. Specifically, we represent the
data columns or global variables involved in each step as rectangles,
using different legends to indicate whether a variable is an input
or output. Variables appearing in the same step are connected by
lines, allowing users to quickly locate when issues arise. The chart
is arranged from top to bottom, aligning with the execution flow
of the script. ViseGPT focuses on sequential execution and does
not support branching or loops. This design aligns with typical
data wrangling scripts, where batch operations are inherently lin-
ear and account for the majority of transformations. In the future,
support for nonlinear logic can be expanded. In order to save space,
column and variable names at the top are displayed at an angle.
While step-based granularity ensures alignment with scripts, we
acknowledge there are scalability challenges for long scripts and
believe exploring hierarchical block-level abstractions and more
detailed single-step interaction is meaningful (Section 6.3).

Visualization of unit test results. Building on the visualization of
the script’s data transformation process, the system can also present
the execution process and final results of unit testing. Different rec-
tangle colors indicate the test pass status of a variable at each step:
green represents that the script’s output fully meets the constraints
of the test cases, while red indicates conflicts. At the bottom of
the summary chart, the final test results are displayed (Figure 2
F1), including the number of failed test cases and the test pass rate
(the number of passed test cases divided by the total number of
test cases). Users can click on the rectangles to view details for a
variable at a specific step and customize the test set (D3). The detail
view that pops up on the right includes variable parameters, step
ID, test cases, and detailed data. When a rectangle is clicked, the

corresponding script line and chart row will be emphasized, and
the variable name in the script will be highlighted.

4.4 Optimizing the Script Iteration Workflow

After presenting the overview of test results, ViseGPT provides the
corresponding features when users want to view the test cases and
data details to make revisions for continued iteration.

Presentation and customization of test cases. A detailed list of test
cases for the corresponding variable is placed in the detail panel
(Figure 2 D). The icons on the left side of the list represent different
categories, while their colors indicate whether the test case has
passed (Figure 2 D1). Clicking an icon reveals detailed information
on the right, including a brief description and an explanation about
the test case. Below the test case content, there are four buttons
that enable custom modifications, sending test reports, and filter-
ing conflicting data, enhancing the debugging and script analysis
capabilities (Figure 2 D2). After customizing the test cases, clicking
the refresh button (Figure 2 G) at the top will trigger the system to
re-run the tests and display an updated test report.

Inspection of single-step detailed data. Below the detailed list of
test cases, the default view displays the output of the column at
a specific step (Figure 2 E). After applying the data filter in the
test case list, only the data associated with failed test cases will
be shown. However, inspecting a single column in isolation is not
intuitive in complex scenarios involving multi-column and multi-
variable transformations. For seeing several columns at the same
time, users can click the magnify button in the upper right corner
(Figure 2 E1) to view the entire data tables for the current step.

Iteration of the script based on test reports. In daily programming
tasks, when encountering system errors while working in a local
compiler, it has become a common practice to directly copy the
error message and send it to LLMs for analysis and resolution.
ViseGPT supports sending test reports as prompts for code iteration
(Figure 2 C1). The test report uploaded to the backend includes test
case details, test results, script lines, and output data, allowing for
more targeted problem-solving within our testing framework.
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4.5 Implementation

ViseGPT is a web application, whose front-end is built on the React
[69] framework with TypeScript. The back-end utilizes the Llama-
3.3-70b-Instruct model hosted by NVIDIA. Based on this model, we
have further developed the test case generator. Note that we select
this model as a feasible solution, and the system’s tooling is largely
model-agnostic, designed to work with various LLM outputs. We
encourage future research to investigate alternative LLM architec-
tures and their impacts on performance in depth. After the LLM
code agent generates a data wrangling script, the system backend
parses the prompt to analyze its semantics and processes it into test
cases. The backend with WebSockets [61] can progressively stream
output to the frontend, allowing script content and test results to
be dynamically displayed in real-time.

5 Evaluation

We evaluate ViseGPT through a user study with 18 participants (P1-
18) of various backgrounds. The evaluation explores the following
four research questions.

e How does ViseGPT improve the efficiency of debugging data
wrangling scripts generated by LLMs?

e What impact does ViseGPT have on users’ accuracy in evaluating
LLM-generated data scripts?

e How does ViseGPT assist users in iterating on LLM-generated
data wrangling scripts after identifying issues?

e How can ViseGPT be optimized to enhance its practical utility
for debugging LLM-generated data wrangling scripts?

5.1 Experiment Settings

We conducted a comparative study with 18 participants to debug
four LLM-generated data wrangling scripts between ViseGPT and
Baseline. After completing tasks, we analyzed their performance
and collected subjective feedback with the within-subjects design.

Participants. We recruited 18 participants (15 males, 3 females;
ages 20-26, M = 22.17, SD = 1.69) through campus forums, social
media and promotional referrals. Participants comprised 12 un-
dergraduates, 4 master students, and 2 PhD students majoring in
computer science, robotics engineering, bioinformatics, etc. Accord-
ing to their self-ratings on a 5-point Likert scale (1: lowest extent,
5: greatest extent), they were experienced with the Pandas syntax
used in ViseGPT (M = 3.28, SD = 0.57) and data wrangling (M = 3.17,
SD = 0.92). Additionally, they had extensive experience in using
LLM-powered natural language-based conversational interactions
products (M = 4.33, SD = 0.59). In summary, all participants met the
participation requirements for the user evaluation.

Baseline. We removed the extended views and associated de-
rivative features in ViseGPT, designating the experimental group
that subsequently used this system for debugging as Baseline. In
other words, the Baseline system is functionally equivalent to LLM-
powered dialogue tools (e.g., ChatGPT) that participants commonly
interact with. To minimize variables and enhance the reliability of
experimental conclusions, Baseline maintains consistent stylistic
design and basic functionalities (e.g., conversation context preser-
vation) with ViseGPT, while utilizing the same foundation model
(i-e., Llama-3-70b-Instruct).
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Tasks. The evaluation included four tasks (A-D) sampled from
distinct work contexts (refer to supplementary material for details).
For each task, we presented participants with requirements of data
wrangling scripts and a corresponding Pandas script containing
functional errors. Although these scripts were generated using LLM
with the requirements as prompts, they were syntactically correct
but deviated from the intended functionality. Participants were
required to debug the scripts using either ViseGPT or Baseline by
identifying and correcting discrepancies from requirements. All
error cases in the experimental scripts were derived from real-world
examples documented in our formative study (Section 3).

5.2 Procedure

We opted for a modified balanced Latin square design [13] to con-
trol for potential order effects of tool usage on task performance. In
our experiment design, each tool (ViseGPT and Baseline) appeared
exactly 9 times in each task (A-D), collectively covering all possible
tool-task combinations (Total: 6 groups X 4 tasks X 3 rounds = 72
trials, 36 trials per tool and 9 trials per tool for each task). This
approach enabled statistically robust comparisons of tool perfor-
mance across multiple tasks while controlling for learning biases
and individual differences. The complete experimental procedure
lasted approximately 60 minutes.

Prior to experimental procedures, participants took part in a
training session consisting of a system tutorial and a practice task,
which took about 5 minutes. Subsequently, the participant worked
on Task A-D sequentially, with each task allocated a 15-minute
time limit. Participants ended each task when they either reached
the time limit or completed the debugging. The entire task exe-
cution process was screen-captured for subsequent analysis. The
evaluation ended with a semi-structured interview and a User Expe-
rience Questionnaire (UEQ) [65]. The interviews focused on gath-
ering participants’ overall impressions of tool performance across
script debugging stages and eliciting improvement suggestions. We
adopted the UEQ to measure participants’ perceived experience
with both ViseGPT and Baseline, and compared the results using
the official UEQ data analysis tool [72]. In total, the post-experiment
interview and questionnaire took no longer than 15 minutes. The
participation fee was $10 per hour.

5.3 Results

We compare task correctness, time spent and participants’ subjec-
tive ratings between Baseline and ViseGPT. In addition, we analyze
specific interaction behaviors of participants and report insights
derived from the interview.

5.3.1 Task correctness and spent time. Table 2 compares participant
performance between ViseGPT and Baseline conditions across the
four experimental tasks (A-D). The success rate, defined as the per-
centage of participants who successfully fixed the bug, was higher
in the ViseGPT condition for Tasks A, B, and D. However, Task
C showed comparable success rates between conditions (ViseGPT:
56% vs. Baseline: 22%). Furthermore, as shown in Figure 5, ViseGPT
significantly reduced completion times for Tasks A, B, and D (Mean
difference > 120s), while no substantial difference was observed for
Task C (ViseGPT: M = 625s vs. Baseline: M = 645s).
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Table 2: The success rate (%) and No. query submissions to LLMs in ViseGPT and Baseline for Task A-D (N=9/condition). The issue
column describes the mistake made by LLMs in the task. #CR: No. clicking rectangles in ViseGPT. #QT: No. query submissions

with test reports in ViseGPT. “(Value)”: standard deviance.

Task Issue #CR #QT . Average Query. ‘ Success (%) .
ViseGPT Baseline ViseGPT Baseline
A Length mismatch in string 7.56 (6.45)  1.33(0.67) | 2.00(0.94) | 3.33(2.26) | 100(0.00) | 78 (0.42)
B Missing boundary in grouping 3.89 (3.38) 1.33 (0.47) 1.78 (1.03) 4.11 (1.97) 100 (0.00) 33(0.47)
c Inconsistent letter casing 9.67(8.38)  1.78(0.79) | 2.33(0.67) | 3.11(1.97) 56 (0.50) | 22 (0.42)
D Non-compliant rounding 8.89 (5.07)  2.00(0.94) | 3.00(1.63) | 2.78 (1.75) 89 (0.31) | 11(0.31)

1000 -

18

A B C D
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Figure 5: Completion time in four tasks.

We analyze the factors underlying ViseGPT’s lower performance
in Task C. The task required participants to calculate global influ-
ence scores for five specified colors in images. The raw data used
standard case-insensitive #RRGGBB color codes, while the initial
script lacked case normalization. Consequently, the color sorting
operation treated differently-cased representations (e.g., #FF0000
and #ff0000) as distinct colors, resulting in erroneous counts ex-
ceeding the five target colors. First, ViseGPT successfully generated
test cases to verify that the rank_label column (representing color
influence rankings) should contain integers between 1 and 5, as
specified in the prompt. Consequently, the system correctly flagged
issues when rank_label values exceeded 5. We observed that al-
though all participants detected this issue, their subsequent analysis
of the issues and the prompts they submitted for script regeneration
impacted ViseGPT’s performance. A minority of participants (3/9)
promptly identified the range issues arising from duplicate color
code counts. By directly instructing ViseGPT to normalize color
code casing, they resolved the issue. However, the majority of par-
ticipants (6/9) opted to describe the situation directly to ViseGPT
(e.g., “The rank_label column contained invalid values exceeding the
upper bound of 5.”) without addressing the underlying cause of color
duplication. This led ViseGPT to implement suboptimal solutions,
such as using pd.head() to limit output to five rows, instead of
standardizing the color format. This resulted in extended debugging
cycles and reduced success rates.

5.00
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Figure 6: Rating results in UEQ.

5.3.2  Subjective ratings. After UEQ investigation, we used Shapiro-
Wilk tests to test normality (all p > 0.05), and used Student’s paired
t-tests (¢ = 0.05). The results demonstrated that ViseGPT was
significantly better (p < 0.05) in all six dimensions compared with
Baseline (Figure 6).

5.3.3  Specific interaction behaviors. We recorded three interaction
metrics during the study (Table 2): (1) the number of queries sent,
(2) the number of queries with test reports attached in ViseGPT,
and (3) counts of clicking rectangles in the tailored Gantt chart.

Our analysis revealed that participants preferred attaching test
reports when submitting prompts in ViseGPT across all four tasks,
with this behavior accounting for over 60% of total query sub-
missions when using ViseGPT. The situation demonstrates that
participants in the ViseGPT workflow showed a preference for up-
loading test results as supplementary material when submitting
prompts. We infer that this extended functionality reduces users’
manual issue-summarizing efforts, while its interactive usability
could potentially enhance confidence in script modifications.

We also observed that in all the tasks except Task D, participants
sent more prompts in the Baseline condition than ViseGPT. With
ViseGPT’s intuitive visual debugging interface and advanced inter-
actions, participants were typically able to obtain correct scripts
within fewer iterations. For Task D, we noticed that two participants
(P17 and P18) using the Baseline requested early termination after
sending just one prompt, but their final scripts still contained issues.
During interviews, we specifically inquired about this situation.
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Both stated that they ended the task because the Baseline system
indicated the provided script had no issues, and they detected no
problems during manual inspection.

5.3.4  Overall impressions around two stages. Upon completion
of all tasks, we conducted semi-structured interviews to evaluate
participants’ experiences. The interviews specifically focused on
participants’ debugging processes across two critical stages: (1)
script verification and (2) code modification implementation.

About verifying script correctness and analyzing issues.
The majority of participants (16/18) reported that ViseGPT’s visual-
ization provided more intuitive debugging assistance compared to
Baseline’s generic responses, facilitating faster issue identification.
“T can directly click the red rectangles (in the tailored Gantt chart)
to view failed test cases rather than reviewing the entire script from
scratch.” (P12) Additionally, participants (12/18) appreciated the
automatically generated test cases for their logical categorization,
which enhanced debugging precision. Notably, some of participants
(3/18) raised concerns about potential undetected issues persisting
in scripts despite full test case validation. “Due to inherent limi-
tations in constrained data description methods, the test cases may
lack rigor and fail to achieve full coverage.” (P3) And participants
(P2 and P9) noted that compared to Baseline’s textual explanations,
ViseGPT offered less flexibility in elucidating script logic.

About modifying the scripts iteratively. Participants (17/18)
reported that ViseGPT enabled context-aware rapid corrections,
significantly boosting their confidence in script modifications. The
auto-generated test cases (7/18) and test report attachment feature
(14/18) reduced descriptive burden during debugging. However,
some users (6/18) noted that Baseline’s free-form questioning al-
lowed direct explanation of modification logic, whereas ViseGPT’s
revision process was harder to track. “Although I didn’t comprehend
the source of issues, ViseGPT successfully corrected based solely on
my description of the situation - but the lack of explanatory feedback
left me somewhat confused about the resolution process. ” (P14)

5.3.5 Suggestions from participants. To enhance ViseGPT’s practi-
cal utility, we collected optimization suggestions from participants
during user studies.

Expand test case categories and severity classification. Be-
yond the 8 predefined test case categories of ViseGPT, participants
recommended expanding more categories (6/18) and even support
user-defined test case category (3/18) to improve test coverage and
flexibility. Moreover, some participants (2/18) expressed that the
current color-coding scheme - using red for issues and green for
passed tests - appears overly simplistic for complex debugging
scenarios. “ViseGPT could adopt modern compiler conventions by
classifying less severe issues as warnings and marking them in yel-
low, thereby developing a three-tier status indicator system.” (P17)
With severity classification, users can prioritize debugging efforts,
focusing first on critical issues while deprioritizing minor warnings.

Implement data causality analysis to enhance tracing. Par-
ticipants (P5, P10 and P13) pointed out that ViseGPT’s insufficient
presentation of dataflow causality made it difficult to trace the
transformation process of erroneous data during debugging. For ex-
ample, in Task D, the erroneous value 20.5 in the purchase_amount
column was originally positioned mid-column. However, after exe-
cuting df.sort_values(by="'purchase_amount' ,the value relocated
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to the column’s final row. “Tracing the data transformation process
consumed significant time - while I could identify the erroneous out-
put, determining its origin proved still challenging.” (P10) Therefore,
in addition to the existing single-step data display, providing visual-
ization of erroneous data’s transformation path across steps would
improve debugging efficiency.

6 Discussion

This paper introduces ViseGPT, a novel tool for enhancing the
efficiency of users in debugging LLM-generated data wrangling
scripts, aiming to better align the scripts with user prompts. User
evaluation revealed that using ViseGPT makes issue validation in
scripts more intuitive and boosts confidence in correctness after
modifications (Section 5.3.4). In this section, we discuss the implica-
tions of the system design (Section 6.1) and outline the limitations
of the research as well as future work directions (Section 6.3).

6.1 Design Implications

Throughout the design and development of ViseGPT, we have
gained valuable implications beyond the system itself.

Implementing a “testing-as-conversation” interaction model
to refine debugging workflow. While traditional testing remains
a post-development phase [53], ViseGPT compresses the entire data
wrangling script development process into a simplified workflow,
using a “testing-as-conversation” paradigm [28]. This design ap-
proach adheres to M. Fowler’s “Continuous Integration” principle
[22], which is one of the core practices in Agile development [67].
First, developers can immediately transform failing cases into de-
bugging clues through interactive workflows. ‘T believe that even
users with limited (data wrangling script) programming expertise
can derive novel insights into script debugging with ViseGPT.” (P11)
Based on this perspective, ViseGPT adapts to users with varying
levels of expertise in data wrangling script development.

Establishing a framework of constraints enhances clarity
and boosts users’ confidence. ViseGPT systematically extracts
and validates constraints from natural language prompts. By mak-
ing expectations explicit, such a framework reduces ambiguity in
both the user intent and the behavior of generated scripts. This
approach aligns with the “Specification as Code” paradigm [4, 18]
from formal methods. Interacting with a well-structured testing
framework can enhance users’ confidence in the final results [45].
“The end-to-end process—from sending a prompt, to generating results,
to validating results with the original prompt—serves as a confidence
bridge between me and ViseGPT.” (P16) The design tries to expand
the trust boundaries of Human-LLM collaboration.

Enhancing debug reasoning through visualization. Ob-
serving how users debug LLM-generated scripts (Section 5.3.3), we
found that visualization in ViseGPT serves not just as an infomation
presentation medium, but as a central mechanism for supporting
logical reasoning and identifying issues. Unlike conventional de-
bugging tools that provide textual descriptions of results and counts
of bugs [37], the tailored Gantt chart summarizes the execution pro-
cess, enabling users to quickly identify critical steps and spot issues.
“During debugging, observing visual elements is more engaging and
effective than focusing on code. ” (P7) This opinion serves as valida-
tion for attraction of our visualization design. However, we should
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remain mindful of its inherent limitations, possibly introducing
new issues rather than resolving them (Section 5.3.1).

6.2 Aligned Visualizations for AI Explainability

Building upon our visualization design for script debugging (Section
4), we argue that the aligned-to-output-line paradigm can bridge the
“gulf of evaluation” in Human-LLM collaboration across domains
[70]. Norman’s gulfs of execution and evaluation [58] highlight
the cognitive gap between system outputs and user interpretation,
which is also a challenge acutely present in LLM interactions where
users struggle to trace how outputs relate to their intent. ViseGPT’s
Gantt chart displays that structural alignment between output com-
ponents (code lines) and their visual explanations (test results)
enhances interpretability. The key point of this approach lies in
its ability to externalize the implicit relationships between input
prompts, intermediate reasoning, and final outputs. Our participant
feedback (Section 5.3.4) supports that such spatial organization aids
pattern recognition and issue localization, which is transferable to
scenarios requiring stepwise validation of LLM outputs.

In conclusion, the “aligned-to-output-line” strategy offers a scaf-
fold for cross-domain explainability standards. By adopting this
paradigm, tools could mitigate the "black-box" effect of LLMs, trans-
forming opaque reasoning chains into inspectable, interactive arti-
facts [16]. We envision extensions of this work adapting the align-
ment principle to multimodal outputs (e.g., image-text pairs) or
collaborative settings where visual explanations serve as shared
referents for team debugging—ultimately advancing the goal of
human-Al interaction transparency.

6.3 Limitations and Future Work

This section examines three key limitations of the ViseGPT sys-
tem in data wrangling script debugging and proposes potential
directions for future work.

Step Granularity Trade-offs. The step-based segmentation in
ViseGPT follows an “aligned-to-line” design (Section 4.3). However,
this granularity may introduce scalability limitations: long scripts
suffer from reduced readability due to vertical sprawl, while com-
plex single-step operations (e.g., multi-column transformations)
may be hard to understand in a step-level view. Future work can
investigate a framework with hierarchical abstractions, balancing
coarser block-level summaries for scalability with finer sub-step
breakdowns for intricate operations.

Task Representativeness and Complexity. In the evaluation,
the four tasks (Section 6.1) were selected from formative study
to ensure practical relevance and they focus on common viola-
tions (e.g., formats, ranges) that directly manifest in output data, as
such issues represent high-frequency pain points identified. How-
ever, we acknowledge that real-world data wrangling scripts often
involve more complex situations. The current evaluation demon-
strates ViseGPT’s effectiveness in handling common debugging
scenarios, but future work should expand to include more diverse
and sophisticated issue types to further validate the versatility.

Test Case Coverage and Flexibility. While ViseGPT’s auto-
mated test case generation improves debugging accuracy efficiency,
its current framework is limited to predefined constraint categories
as a concern expressed by the participants in Section 5.3.4. This
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may not fully capture nuanced or domain-specific requirements,
leading to potential gaps in test coverage. Future work could ex-
pand the system’s flexibility by allowing users to define custom test
case categories or integrate dynamic learning [88] from iterative
feedback, thereby enhancing adaptability to diverse scenarios.

Language and Framework Generalization. Currently, ViseGPT
primarily supports Python-based data wrangling scripts, limiting its
applicability to users working with other programming languages
(e.g., R, SQL, or Julia). Future research should explore extending
the system’s requirement analysis and test generation capabili-
ties to additional languages, as well as integrating with domain-
specific frameworks. This expansion would broaden ViseGPT’s
utility across different programming ecosystems.

Debugging Transparency and Workflow Integration. The
tool’s visualization effectively highlights test failures but lacks de-
tailed tracing of data causality across script steps (Section 5.3.5),
which can complicate root cause analysis. Additionally, its stan-
dalone nature may disrupt existing workflows, such as integration
with IDEs or version control systems. Future work could enhance de-
bugging transparency with interactive dataflow graphs and improve
usability through seamless integration with popular development
environments (e.g., Jupyter Notebook, VS Code) and collaborative
features for team-based debugging.

7 Conclusion

This paper presents ViseGPT, a tool that addresses the challenge
of debugging LLM-generated data wrangling scripts by achieving
better alignment between natural language prompts and results.
Through automatically extracting constraints from user instruc-
tions and generating systematic test cases, ViseGPT enables users to
efficiently verify whether generated scripts align with their require-
ments without requiring deep programming expertise. The system’s
constraint-based validation approach, combined with its intuitive
Gantt-chart visualization and interactive debugging features, pro-
vides users with actionable insights to identify and resolve script
issues. Our user evaluation (N=18) demonstrates that ViseGPT im-
proves the efficiency and accuracy of debugging LLM-generated
data wrangling scripts, making complex tasks more accessible. This
work advances the field of human-AI collaboration by offering a
practical solution that enhances both the trustworthiness and it-
erability of Al-generated code, ultimately empowering users to
harness the full potential of LLMs with greater confidence.
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