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Abstract Developing effective visual analytics

systems demands careful considerations in

characterizing domain problems and integrating

visualization techniques and computational methods.

Due to the explosive emergence of urban data and

the rapid development of visualization techniques

and computational methods, urban visual analytics

has achieved remarkable success in tackling urban

problems and providing fundamental services for smart

cities. To further promote academic research and

assist the development of industrial urban analytics

systems, we comprehensively review the urban visual

analytics studies from four perspectives, namely,

domain problem, visualization, computation, and

system. In particular, we identify 8 urban domains

and 22 types of popular visualizations, analyze 7 types

of computational methods, and categorize the existing

systems into 4 types based on the integration of

visualization techniques and computational methods.

Finally, we conclude the summarization of the state-

of-the-art progress with potential research directions

and opportunities.
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1 Introduction

Urban computing has achieved remarkable success

in tackling many urban problems [208], such as traffic

prediction [130], air quality forecasting [213], bike

lane planning [54], transit route planning [171], and

location selection [85]. However, since urban analytics

is an interdisciplinary field, it is crucial to integrate

domain knowledge and expertise in the analysis loop.

Hence, urban visual analytics [210] was proposed and

extensively studied to empower urban experts with

the combination of intuitive data visualizations and

fast computational methods, enabling the experts to

visually and interactively perceive, explore, manipulate

and reason with urban data [102].

When developing an urban visual analytics approach,

practitioners like urban analysts and researchers may

have the following four questions:

1. Which urban domain problems were solved or

not solved yet by visual analytics?

2. What visualization techniques were applied to

visually interpreting urban data?

3. What computational methods were employed

in urban visual analytics to solve urban problems?

4. How to combine visualizations and computational

models in existing visual analytics systems?

Without answers to these questions, researchers will

find it difficult to obtain a big picture of the state-of-

the-art progress of urban visual analytics. The lack of

such a big picture prohibits urban analysts from quickly

finding feasible approaches from prior studies when

designing visual analytics solutions for urban problems.

The recent rapid development of urban visual
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analytics urgently demands a comprehensive review

to summarize how urban problems can be addressed

effectively with visual analytics and reveal the future

directions of urban visual analytics [5, 27, 210]. As for

question 1, Chen et al.’s [27] and Andrienko et al.’s [5]

surveys focused only on the traffic domain. Zheng et

al.’s survey [210] discussed the general urban visual

analytics approaches but was only from a data point

of view and did not summarize the domain problems.

As for question 2, Chen et al.’s [27] and Zheng et

al.’s [210] surveys categorized visualizations based on

whether it is temporal, spatial, or for other properties.

However, many recent techniques were not included

in these reviews, given that the latest review was

published five years ago. As for question 3, none of

the existing surveys can answer it. As for question 4,

Zheng et al. [210] classified the systems that combine

visualizations and computational methods into “data

exploration and pattern interpretation” and “visual

learning” based on the system output. Yet, how to

combine visualizations and computational models, e.g.,

their respective roles and interrelationships, remains

unclear.

In this study, we attempt to develop a systematic

and comprehensive survey of urban visual analytics.

By answering the four questions, this survey

summarizes urban visual analytics studies from

multiple perspectives, including domain problems,

visualizations, computational methods, and systems.

Since urban visual analytics is an interdisciplinary

research topic, we investigated the prominent

journals and conferences in multiple fields, including

visualization, transportation, data mining, and

geography. To avoid missing important papers, we

generally followed the reference- and search-driven

paper collection methods in Guo et al.’s study [52].

The collected papers were mainly published in four

journals, namely, IEEE TVCG, CGF, IEEE TITS,

and ACM TIST, and four conferences, namely, IEEE

VIS, EuroVis, PacificVis, and ACM CHI. These

papers range from 2007 to 2022. An interactive

tool for exploring these papers is available at

https://urban-va-survey.github.io/. Our

contributions can be summarized from the following

aspects.

• Survey. We present a systematic survey of

urban visual analytics. This survey summarizes

the significant progress urban visual analytics has

made in the past few years comprehensively from

four perspectives. This survey also indicates future

research directions and opportunities.

• Domain problem. We categorize the domain

problems studied in urban visual analytics into

8 domains. Such a taxonomy not only assists

urban analysts in finding relevant visual analytics

approaches for real-world urban problems, but also

reveals the gap between the existing approaches

and the urban problems that are yet to be solved.

• Visualization. We categorize the visualization

techniques for the spatial, temporal and other

properties in urban data into 22 types and

demonstrate their usages in different analytical

tasks in the hope of promoting the better usage

and designs of urban data visualization.

• Computation. We categorize the computational

methods that drive urban visual analytics into 7

types and report the usage of artificial intelligence.

• System. We conclude 4 types of urban

visual analytics systems based on the integration

of visualization techniques and computational

methods and discuss the applicable scenarios and

trends for each system type.

2 Domain problem

The existing surveys [5, 27, 210] focused on data and

attempted to answer what could be done with different

types of data. However, real urban analytics scenarios

generally start with specific urban problems. In this

section, we classify the urban domains that have been

studied by visual analytics into 8 categories: traffic,

environment, business, economics, public security,

architecture, public service, and public opinion. Table 1

and 2 summarize the categories, specific problems, and

relevant urban visual analytics studies.

Generally, the classification is made based on the

papers’ introduction, case studies and usage scenarios.

Note that an approach can be applied to multiple

domains and address different specific problems. Take

VisCas [37] as an example – urban analysts can use

VisCas to analyze the cascades of both air pollution

and traffic congestion events. Hence, we put VisCas

into the environment and traffic domains based on its

applications indicated in the usage scenarios.

2.1 Traffic

The traffic domain is the most widely studied due

to the explosive growth of mobility data in the past

decade. Mobility data contains valuable knowledge

because mobility is the most important manifestation

of citizens’ activities in urban space.

Human mobility. Some approaches are proposed

specifically for studying human mobility. They are not

2
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Tab. 1 Domain problems studied by the existing urban visual analytics approaches.

Domain Problem Papers

Traffic

Human mobility

Errors and uncertainty of trajectories [25, 26, 63, 107]

Mobility patterns
[9, 26, 28, 32, 49, 96, 98, 101, 108, 111, 115,

134, 149, 159, 161, 177, 198]

Origin-Destination patterns [6, 44, 69, 96, 109, 110, 146, 200, 202, 214]

Human co-occurrence [25, 29, 178, 212]

Mobility semantics [3, 71, 191, 199]

Road network

Road network accessibility [42, 68, 179]

Road centrality [61]

Road correlation and causality [38, 168]

Intersection interchange behavior [51, 160, 197]

Tidal lanes analysis [160, 211]

Traffic situation understanding [160, 161]

Traffic zone division [32, 67, 152]

Congestion

Congestion monitoring [72]

Congestion discovery [7, 8, 28, 132, 134]

Congestion propagation [167]

Congestion events’ cascades [37]

Congestion causal inference [28, 132, 160]

Congestion prediction [72]

Public transportation

Network accessibility [11]

Bus schedule analysis [129]

Interchange behavior [197]

System usage [200]

System efficiency [105, 172, 196]

Bus network optimization [68, 105, 172]

Shuttle bus planning [3, 100]

Traffic safety

Tunnel surveillance [133]

Vehicle monitoring [135]

Abnormal driver detection [3, 92]

Traffic violation identification [51]

Abnormal traffic pattern detection [135]

Autonomous driving

Traffic light detection evaluation [47]

Semantic segmentation evaluation [55]

Autonomous driving action evaluation [66]

Autonomous driving system evaluation [57]

Traffic volume forecasting & simulation [12, 201]

limited to a specific problem but provide implications

for a wide range of scenarios.

Mobility data collected by GPS is usually inaccurate

owing to measurement errors and the low sampling

rate. Map-matching [106, 194] is the first step toward

obtaining clean mobility data. Lu et al. [107] assisted

this process with visual analytics. Chen et al. [25]

summarized five types of uncertainty in trajectory data

and proposed a semi-automatic refinement method. In

addition to GPS-based data, Chen et al. [26] worked on

the uncertainty of the trajectories inferred from sparse

geo-tagged posts.

Given the clean mobility data, various visual

analytics approaches were developed for studying

mobility patterns [9, 26, 28, 32, 49, 96, 101, 108,

115, 149, 159, 161, 177, 198], origin-destination (OD)

patterns [6, 44, 69, 96, 109, 110, 146, 200, 202,

214], co-occurrences [25, 29, 178, 212], and mobility

semantics [3, 63, 71, 191, 199]. These analyses

supported the in-depth understanding of how citizens

move within the urban space. Notably, some interesting

studies attempted to infer the semantics of mobility

using contextual information like the surrounding

points of interest (POIs) [191, 199]. Such semantics

forms the basis of convenient text-based mobility query

in [3, 63].

Some other approaches involving human mobility

focus on addressing domain-specific problems. Thus

we categorize these approaches into other domains.

Road network. As the foundation of urban traffic,
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road networks have been analyzed in many visual

analytics systems. These analyses can be divided into

macro-, meso-, and micro-levels.

At the macro-level analysis, accessibility globally

measures how fast a place can be accessed from another

in a road network. Accessibility can be computed

based on the vehicles running on the roads. To analyze

accessibility across the entire road network, a density-

map-based visualization [42] and a visual query-based

approach [68] were developed. Wu et al. [179] also

designed visualizations to reveal how the reachability

boundary changes over time. Huang et al. [61] analyzed

road centrality (i.e., importance) in the road network

based on the PageRank algorithm.

The meso-level analysis studies the relationships

among multiple roads. Roads can be grouped into zones

based on the inherent traffic patterns [32, 67, 152]. The

implicit correlation and causality of roads are visually

investigated in [38, 168].

The micro-level analysis dives into the individual

roads. Wang et al. [160] allowed users to assess roads

based on the passing trajectories. Zheng et al. [211]

and Wang et al. [160] studied the bi-directional traffic

flow of individual roads, supporting the policy-making

of tidal lanes. Road intersections can be investigated by

visualizing traffic interchange behaviors [51, 160, 197].

Congestion. The most notorious problem of road

traffic is congestion. Detecting and understanding

congestion are critical to reducing traffic congestion.

Congestion can be visually discovered based on the

velocity of trajectories [7, 8, 28, 132, 134]. Lee et

al. [72] further developed a visual analytics system for

predicting traffic congestion. Congestion events can

propagate or spread over space and time, leading to

a large area of congestion. Many approaches were

proposed for understanding such processes, shedding

light on effective congestion control. Wang et

al. [167] are the first to visually analyze the congestion

propagation on the road network topology. Deng

et al. [37] studied the implicit cascading processes

of congestion events based on the spatiotemporal

relationships of the events instead of the road network

topology. Tailored visualizations were designed to

support experts to infer the causes of congestions from

multiple aspects [28, 132, 160].

Public transportation. Efficient, convenient, and

comfortable public transportation can satisfy more

travel demands, alleviating traffic congestion and

improving cities. Representative public transportation

methods include subways, shared bicycles, and buses.

Visual analytics can facilitate the evaluation and

optimization of public transportation systems.

Evaluation. The evaluation can be performed based

on the timetable (or schedule), travel time, and the

satisfaction of travel demands. Andrienko et al. [11]

exploited the planned bus timetables to reveal how

a transportation system connected urban space (i.e.,

accessibility). Considering the discrepancies between

the actual and planned operations, Palomo et al. [129]

compared the timetables against the actual service to

diagnose the low efficiency, e.g., a serious delay.

A passenger’s trajectory along with its interchange

behaviors [197, 200] can be inferred from the OD data in

a public transportation system. Thus, various metrics,

such as waiting and transfer time, can be derived based

on the passengers’ ODs and visualized to understand

the efficiency [105, 196]. Beyond the numeric metrics,

Weng et al. [172] visually encoded the movement of

bus passengers to discover the gaps between the current

system and the travel demands.

Optimization. Experts can optimize the system after

understanding and evaluating the public transportation

systems. For example, Lorenzo et al.’s method [105]

supported the comparison between the old and the new

routes with respect to the derived metrics. Kamw et

al.’s method [68] could identify the areas unreachable

on foot and propose candidate bus stops in these areas.

Liu et al. [100] designed interactive visualizations that

allow users to visually evaluate potential bus stations

and select ideal ones to create a shuttle bus route. Weng

et al.’s method [172] integrated a Monte-Carlo tree

search model [171] into a progressive and interactive

route replacement procedure.

Traffic safety. Traffic safety can be improved via

traffic monitoring, for which visual analytics provides

an interactive and situation-aware environment.

Piringer et al. [133] supported situation awareness in

the surveillance of road tunnels. Pu et al. [135] designed

a vehicle fingerprint to monitor their movements on

roads. Besides, visual analytics also empowered experts

to detect abnormal traffic behaviors [3, 51, 92]. Timely

detection can reduce the occurrence of accidents.

Autonomous driving. Autonomous driving is an

emerging research area. Deep learning models are

incorporated to understand complex road environments

and produce driving actions. Thus, the performance

of these models is critical. Recently, researchers

have started to use visual analytics to evaluate traffic

light detection [47], semantic segmentation [55], action

prediction models [66], and even the entire system [57].

Prediction & Simulation. Andrienko et al. [12]

proposed a visual analytics framework for accessing,

4
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forecasting, and developing what-if options. Zeng et

al. [201] adopted visual analytics for diagnosing the

impact of the flow aggregations on traffic prediction.

Zeng et al.’s method essentially uses visualizations to

improve the prediction models based on deep learning.

Two approaches were used to predict traffic volumes,

but they can be extended to other similar scenarios,

such as predicting traffic speed and travel time.

2.2 Environment

Environment, on the one hand, is of great significance

to environmental science and geographic science. On

the other hand, it greatly affects people’s lives.

The widely deployed environment monitoring stations

provide a sheer volume of environment data that can

be used to gain insights into environmental issues, such

as water quality, air quality, and meteorology changes.

Environmental issues have also been widely studied in

the visualization community.

Air quality. Air quality has increasingly been a

critical problem and has a profound impact on the

economy and health. Qu et al. [136] firstly proposed

a visual analysis approach for understanding the air

pollution problem. Li et al. [73] proposed a real-time

visual query method for retrieving the spatiotemporal

distribution of air pollution. To control air pollution,

understanding its influence and propagation processes

is significant. Various visual analytics techniques

were developed to study the propagation processes

based on co-occurrences [76, 184], simulation [36],

event cascades [37], correlation [50], and causality [38].

Besides, Shen et al. [144] proposed a visual analytics

approach combined with deep learning to predict air

quality.

Meteorology. Meteorological issues also affect

people’s daily lives. Gautier et al. [45] overlaid

temperature data onto a 3D city model to analyze the

temperature. Qu et al. [136] designed a representation

to reason the correlation between temperature and

air quality. Wu et al. [179] analyzed the boundary

changes of the ozone hole over Antarctica. Li et

al. [77] visualized how climate changes in large-

scale geographic space over a long period of time.

Among many meteorological issues, weather forecasts

are the most related to people. Weather prediction

calibration [91] and prediction result comparison [138]

have been studied with visual analytics.

Water quality, noise, and radiation. Water

quality, noise, and radiation were less studied in

the visualization community. For water quality,

Maciejewski et al. [119] studied the effect of industrial

wastewater on animals. Accorsi et al. [1] designed

an interface for visually exploring the water quality

of rivers. For noise pollution, Li et al.’s method [73]

supported a fast visual query of the spatiotemporal

distribution of flight noise. Malik et al. [120] explored

the spatiotemporal correlation among noise complaints,

traffic accidents, and drunkenness. Radiation pollution,

especially nuclear pollution, is an extremely harmful

environmental problem. Wei et al. [169] allowed

the visual understanding of radioactive contamination

based on the static and mobile sensors.

2.3 Business

At present, the application of urban visual analytics

in business intelligence is mainly location selection.

Selecting facility locations. Selecting suitable

facility locations is an important guarantee for business

profitability. An informed selection process requires

the integration of an intelligent recommendation model

and a human-centered multi-faceted evaluation. Visual

analytics is a good solution for that.

Different types of facilities have different selection

criteria. Traffic flow needs to be considered in

many location selection scenarios, such as commercial

sites [146], billboards [95], and stores [170]. Some

scenarios have specific criteria. Selecting houses

focuses on the reachability over time [173]. Selecting

warehouses should consider the delivery distance [173].

However, unlike the criteria mentioned above, there

are some aspects that cannot be easily quantified, for

example, the spatial context. To this end, Weng et

al. [170] developed a context-integrated solution for

location selection.

Selecting POIs for visit. In addition to selecting

the location of facilities, visual analytics can also help

people choose POIs to visit. Li et al. [74] embed the

keywords extracted from social media into a metro

map, which is called Metro-Wordle. Metro-Wordle

allowed users to seek a restaurant for eating beefsteak

based on the keywords over a city. Kamw et al.’s

method [68] supported choosing a restaurant whose

place is conveniently reachable to friends in different

places.

2.4 Public security

Public security is to protect individuals, property,

and objects from threats such as disasters or accidents.

The threats can be categorized into human-made events

and natural disasters.

Human-made events. Identifying unexpected

human-made events with potential threats can be
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Tab. 2 Domain problems studied by the existing urban visual analytics approaches (continued).

Domain Problem Papers

Environment

Air quality

Air pollution situation [73, 136]

Air pollution co-occurrence [76, 184]

Air pollution propagation simulation [36]

Air pollution correlation [50]

Air pollution event cascades [37]

Air pollution causality [38]

Air pollution prediction [144]

Meteorology

Temperature analysis [45]

Correlation of temperature and air pollution [136]

Ozone hole boundary changes [179]

Climate changes [77]

Weather prediction [91, 138]

Water quality
Water quality understanding [1]

Water pollution effect on animals [119]

Noise
Noise spatiotemporal distribution [73]

Correlation of noise and crimes [120]

Radiation Nuclear contamination understanding [169]

Business
Location
selection

Commercial site selection [146]

Billboard selection [95]

Store selection [170]

House selection [170, 173]

Warehouse selection [81]

POI selection [68, 74]

Public security

Human-made
events

Suspect finding [3]

Abnormal event detection [18, 21, 146]

Marathon monitoring [80]

Crime pattern analysis [113, 118, 120, 195]

Resource allocation [69, 121, 122]

Fire station selection [68]

Crisis management [116]

Disease analysis [2, 117–119]

Surveillance video inspection [123]

Natural
disaster

Flood impact analysis [60]

Evacuation monitoring and understanding [82]

Architecture

Understanding

Human-scale scene sense-making [127, 145]

Non-visual city attribute prediction [14]

Shadow distribution analysis [125]

Location functionality analysis [218]

3D environment exploration [137, 203]

Planning
Impact analysis of new buildings [43, 125]

Urban space design precedent seeking [126]

Economics

Real estate market understanding [154]

Spatiotemporal understanding of sales [96]

Trade network analysis [163]

Economic influence between countries [76]

Public service

Public service events’ hotspot, causality, and emergency [204]

Park management [149]

Locating new hospitals [42]

Lost and found [28]

Public opinion Spatial and temporal patterns [4, 75, 112]

based on various data collected in cities, such as

human trajectories [3, 146], social posts [21], and taxi

trips [18]. Afterward, experts can further investigate

these anomalies and take measures accordingly.

Organized large-scale activities also demand emergency

countermeasures. For example, marathons should be

6
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monitored in real time such that medical assistance is

timely [80]. The aforementioned analyses should be

near real-time, because experts need to quickly find

abnormalities and respond to them.

Besides, visual analytics also supports in-depth post-

analysis for public security, such as, crime analysis [113,

118, 120, 195], police resource allocation [69, 121, 122],

fire station selection [68], crisis management [116],

disease analysis [2, 117–119], and surveillance video

inspection [123]. For example, given history crime data,

crime hotspots with frequent occurrences of crimes

can be visually analyzed [113, 118, 195]. Afterward,

urban experts can take informed countermeasures, for

example, reasonable police arrangements.

Traffic safety is also an important part of public

security. Please refer to Sec. 2.1 for details.

Natural disasters. Timely responses to natural

disasters can reduce many losses. Such decision making

scenarios can be enhanced through visual analytics.

Huang et al. [60] demonstrated the effectiveness of

visual analytics in assessing the impact of floods. Li

et al.’s approach [82] allowed the visual analysis of the

emergency evacuation plan simulation.

2.5 Architecture

Architects or urban planners can use visual analytics

to understand urban space and conduct space planning.

Understanding. The human-scale environment is

the urban space that people are most directly exposed

to, e.g., the things people see when walking on the

street. Street views are the proper materials for

understanding the human-scale environment. Thus,

researchers proposed an efficient query method [127]

and an exploration system [145]. These street views

can also be exploited to predict non-visual city

attributes [14]. In addition to street views, Miranda

et al. [125] simulated and visualized the shadows in the

urban physical environment, which helps understand

the environmental quality of public spaces. Besides,

Zhu et al. [218] explored and analyzed the functionality

of locations in urban space.

On a larger scale, a zooming technique by Qu

et al. [137] allowed users to explore a 3D urban

environment in an occlusion-free way. Zeng and

Ye [203] visually combined 3D physical entities and

numeric urban design metrics to study urban vitality.

Planning. Urban space planning requires many

considerations. For example, when developing new

buildings, the impacts should be accessed. Ferreira et

al. [43] and Miranda et al [125] combined information

visualizations with a 3D urban environment to support

such an analysis. A representative and mature city can

be viewed as a precedent for other developing cities.

Miranda et al. [126] visualized human behaviors in cities

to derive urban space design precedents.

2.6 Economics

Data in economic domains has spatial and temporal

characteristics, posing challenges of analysis. Sun

et al. [154] analyzed the spatiotemporal development

of the real estate market and the correlation among

multiple economic attributes. Liu et al. [96] extracted

and visualized the spatiotemporal patterns from sales

volumes of different regions. In the era of globalization,

the economies of different regions influence each other.

Wang et al. [163] analyzed the trade network of

countries. Li et al. [76] used co-occurrence patterns

of the capita income data to infer the country-wise

influences.

2.7 Public service

Public services in this survey refer to those serving

society and urban residents. Zhang et al. [204]

proposed a visual analytics system for investigating

heat, water, gas supply, drainage, and road divisions

issues. Hotspot and causality analyses and emergency

discovery were supported in their system. Steptoe et

al. [149] visually analyzed tourists’ trajectories and

visiting and communication behaviors in parks, and

gained insights into improving park services. Chen

et al. [28] connected multi-source heterogeneous urban

spatiotemporal data through a novel spatiotemporal

visual query, and applied it to finding lost objects.

Feng et al.’s method [42] can facilitate locating a new

hospital that serves more citizens and balances medical

resources

2.8 Public opinion

Some methods utilized social media data to analyze

the public opinion in the spatial or urban context [4,

75]. Combined with geographic information, users can

have a deeper understanding of public opinion, for

example, what opinions the people in a region have.

Many studies have studied public opinion in the absence

of spatial and urban context [19, 23, 53, 59, 70, 156,

183, 187]. We consider they are out of the scope of

our survey. Please refer to the prior surveys for more

information related to public opinion [24, 180].

3 Visualization

In this section, we summarize the visualizations in

urban visual analytics studies into three categories,

spatial, temporal, and other property visualizations.
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Tab. 3 Visualizations in urban visual analytics.

Visualization Main usage Paper

Spatial

Map (dot) Show distribution

[1, 7, 8, 11, 12, 21, 37, 39, 44, 50, 68, 71, 73, 74, 76,

77, 95, 100, 101, 105, 107, 116, 119, 121, 127, 135,

145, 152, 154, 170, 173, 177, 178, 191, 199, 200, 211,

212]

Map (line)
Show distribution; visualize movement or

influence

[3, 7, 8, 12, 25, 28, 29, 32, 49, 51, 61, 63, 66, 68, 71,

72, 74, 81, 92, 95, 97, 98, 101, 107, 108, 111, 113,

115, 123, 134, 146, 149, 167, 177, 200, 202, 214]

Map (heat) Show distribution

[2, 14, 18, 28, 38, 39, 42, 44, 45, 63, 66, 69, 73, 91,

95, 101, 112, 115–118, 120–122, 125–127, 160, 163,

173, 178, 179, 195, 198, 199, 201, 203, 211, 212, 218]

Map (glyph)
Summarize or compare multi-dimensional

spatial data

[6, 11, 18, 29, 36, 37, 61, 81, 91, 96, 109, 110, 115,

132, 135, 168, 172, 184, 191, 197, 199, 218]

Map (area) Show regions with the same attributes
[9, 12, 25, 44, 67, 68, 100, 107, 113, 115, 132, 138,

152, 161, 169, 172, 196]

Map (graph) Visualize movement, influence, or relations [6–8, 12, 26, 36, 38, 82, 98, 105, 159, 168]

Flow map Visualize crowd movement [69, 161]

3D map
Provide physical context and a sense of

presence

[7–9, 11, 12, 43, 45, 57, 60, 80, 82, 123, 125, 137,

191, 203]

Temporal

Timeline Show temporal features

[3, 4, 6–9, 18, 25, 26, 29, 36, 37, 50, 63, 71–73, 77,

80, 95, 98, 109, 113, 115, 120–123, 126, 132, 133,

135, 146, 149, 159, 167–169, 173, 178, 195, 196, 199,

201, 212, 214, 218]

Line/Area

chart

Show statistics given two dimensions; show

temporal features

[2, 7–9, 11, 12, 18, 26, 28, 32, 38, 44, 50, 57, 61,

66, 73, 80, 91, 96, 111, 112, 115, 117–121, 126, 132,

144, 161, 163, 169, 172, 173, 178, 179, 195, 199, 204,

211, 212]

Streamgraph Show temporal features of multi-objects [51, 75, 144, 154, 179]

Sankey Show temporal features of multi-objects [67, 111, 200, 212]

Others - [38, 49, 76, 100, 101, 129, 177, 195, 196, 198]

Other
property

Bar chart
Show statistics given two dimensions; show

temporal features

[4, 7, 8, 21, 26, 28, 36, 39, 44, 45, 47, 49, 51, 55, 57,

63, 66, 72, 74, 76, 80, 91, 92, 95, 96, 98, 100, 101,

105, 108, 111, 115, 120, 121, 123, 129, 145, 146, 149,

152, 167, 170, 172, 173, 177, 184, 191, 195, 203, 212,

214]

Tree/Graph Visualize movement, influence, or relations [1, 28, 36, 61, 82, 96, 136, 163, 167, 178, 196, 198]

Scatterplot

Visualize projected multi-dimensional

data; Show value distribution given two

dimensions

[1, 3, 12, 18, 26, 32, 36, 38, 39, 44, 47, 51, 55, 60,

60, 67, 77, 80, 81, 95, 101, 117, 119, 126, 132, 136,

144, 145, 152, 160, 163, 167, 169, 179, 184, 201, 212,

214, 218]

PCP Show multi-dimensional data
[3, 32, 43, 47, 49, 51, 57, 101, 132, 136, 145, 152,

177, 178, 184, 203, 211]

Radar Show multi-dimensional data [57, 100, 115, 214]

Glyph
Summarize or compare multi-dimensional

data
[36, 67, 76, 95]

Matrix Visualize movement or relations [49, 55, 77, 152, 163, 170, 172, 178, 214, 218]

Wordle Show semantics [21, 26, 32, 74, 75, 116]

Video Provide details and real-world context [47, 55, 57, 66, 72, 72, 82, 123, 133]

This review further specifies 22 visualization types

under these three categories shown in Table 3, which

is different from the previous surveys [27, 210].

3.1 Spatial visualization

As the basis of urban analytics, spatial context

is introduced in almost all visualization studies.

Visual elements are then depicted in the spatial

context, which constitutes spatial visualizations.

8
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A1

A2

A3

B1

B2

B3

C1

C2

C3

C1

Fig. 1 Examples of dot-on-the-map visualization in [37](A1), [11] (A2), and [170](A3). Examples of line-on-the-map visualization

in [3] (B1), [98](B2), and [200](B3). Examples of heatmap visualization In [28](C1), [118](C2), and [195](C3).

Such visualizations enable the urban analysis to be

performed in a geographic context, such as obtaining

data distributions and anomalies in geographic space.

To obtain more precise insights, we further divide the

spatial visualization into eight types.

Map (dot). Data points like geographic locations

and spatial events can be directly plotted as dots on the

map (Fig. 1A). Only simple visual channels, such as size

and color, are adopted (e.g., in [11, 37] of Fig. 1A1 and

A2). There is even no visual encoding in some cases

(e.g., in [170] of Fig. 1A3), such that a large number

of data points can be displayed in a scalable manner

without overwhelming information.

Map (line). Lines or curves on the map can depict

trajectories (like human mobilities) or facilities (like

bus and subway routes). For trajectories, the line-

based visualization is intuitive to show the mobility

patterns. Fig. 1B1 shows the spatial distribution

of the trajectories involving a target location [3].

Fig. 1B2 shows people’s preference for routes [98]. For

facilities, the line-based visualization retains the urban

geographic context that is itself linear [172, 200], for

example, the Singapore subway routes in Fig. 1B3.

Map (heat). There are continuous and discrete

spatial heatmaps. The continuous heatmap is

a smooth representation of aggregated geo-referred

objects, usually generated by kernel density estimation

(KDE). Both the lines and dots on the map can be

aggregated to generate heatmaps. For example, Liu

et al. [95] summarized the trajectories’ pick-up and

drop-off locations as the heatmap in Fig. 9B. Chen

et al. [28] summarized the trajectories as heatmaps

directly in Fig. 1C1. Besides, the spatial distribution

of geo-referred events can be modeled using heatmaps.

Maciejewski et al. [118] visualized the syndromic

population over space based on syndrome events, shown

in Fig. 1C2.

Discrete heatmap refers to choropleths [13, 62, 195,
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B2

C3

B1 B3

A2A1 A3

C4C2C1

Fig. 2 Examples of glyph-on-the-map visualization in [199](A1), [18](A2), and [172](A3). Examples of area-on-the-map visualization

in [138](B1), [68](B2), and [9](B3). Examples of graph-on-the-map visualization in [98](C1), [159](C2), [82](C3), and [38](C4).

205]. Semantic geographic space division avoids the use

of smoothing algorithms such as KDE. Heat is used to

show the value level of attributes in each region. For

instance, Fig. 1C3 visualizes the number of crimes in

different regions [195].

Map (glyph). Glyphs are effective visualizations

for multi-dimensional data [190]. Glyphs on the

map can summarize complex data together within

a spatial context and support comparison and

in-depth understanding, which can thereby serve

as an overview that guides further exploration.

Geographical information is indicated by glyphs’

geographic positions. The visual channels of glyphs

encode temporal information, attributes, or associated

information. For example, in Zeng et al.’s glyphs [199],

the inner pie chart visualized the portions of the POIs

associated with the location, while the outer radial

area chart encodes the weekly temporal distribution of

mobility (Fig. 2A1). Cao et al. [18] layered rectangle

glyphs on the map to reveal the attributes of detected

anomalies (Fig. 2A2). Weng et al. [172] derived

attributes related to the bus service for each region and

encoded them with radar charts of glyphs (Fig. 2A3).

Map (area). A area (e.g., a polygon) on the map

indicates that the region under this area have the

same attributes. For example, the area constituted

by isocontour means that an attribute of the region

is higher than a certain value, which is widely seen

in meteorology visualizations (e.g., Quinan et al’s

method [138] in Fig. 2B1). In the transportation

domain, areas are used to visualize reachable regions

from a location under constraints [179, 196]. Fig. 2B2

shows a concrete example [68]. Voronoi diagram [164]

also belongs to areas on the map. In Andrienko et al.’s

10
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study [9] (Fig. 2B3), the urban space was divided based

on the significant locations using a Voronoi diagram.

Each region of a polygon is covered by a significant

location.

Map (graph). A graph on the map comprises a set

of nodes with geographic positions and edges between

nodes. Undirected graphs on the map represent the

mutual relationships between nodes. For example, in

Liu et al.’s work [98] (Fig. 2C1), each edge represents

the variety of routes between the two nodes of locations.

Directed graphs can represent the human mobilities

(e.g., in [82, 159]) and spatial influence (e.g., in [36–

38]). Landesberger et al. [159] applied spatial and

temporal simplification to massive human mobilities

and derived a concise mobility graph as Fig. 2C2. Li

et al. [82] used the graph of Fig. 2C3 to visualize

how people (or agents) move during an emergency

evacuation. Some graph visualizations on the map

encode the spatial influence [36–38]. Fig. 2C4 is

an example from Compass [38], where edges encode

the causal relations between the nodes of regions.

Following the graphs, urban experts can obtain the

urban deterioration patterns.

More information can refer to a recent review

that comprehensively explores the visualization of

geographic networks [140].

Flow map. The flow map treats human mobilities

as a flow. Such a technique is often used to summarize

massive crowd movement on a large spatial scale [69,

161]. For example, Kim et al. [69] visualized citywide

movement patterns extracted from non-directional

discrete events using flow maps.

3D map. 3D maps provide a realistic urban context

in a more immersive and engaging way than the 2D

geographic map [31]. It is commonly used in public

security [60, 80, 82, 123] and architecture domains [43,

125, 137, 203] because it provides a sense of presence.

For example, Li et al. [80] and Li et al. [82] adopted 3D

views to track the people who are moving in the urban

space with optimal scene navigation. Ferreira et al. [43]

developed a 3D decision making framework, where

users can well perceive the impact of new buildings on

urban space (Fig. 3A).

Note that the third dimension may result in the

occlusion of information visualizations. Qu et al. [137]

(Fig. 3B) attempted to alleviate the issues by deforming

urban space under constraints [153, 155].

3.2 Temporal visualization

Temporal visualizations display temporal features

along a timeline. Such visualizations support time-

A

B

Fig. 3 Users can perceive the impact of new buildings on urban

space in a 3D environment [43]. 3D urban space is deformed to

highlight the target buildings [137].

oriented exploration and analyses, such as identifying

urban data’s temporal distribution and trends and

drilling down for in-depth reasoning. We classify them

into six types based on the graphical shape.

Timeline. Timeline-based visualizations refer

to those visualizations compactly encoded along a

timeline. Numerical, boolean, and categorical data can

be visually encoded on it.

The timeline can be in linear or circular shapes.

Linear timelines (e.g., in [18, 37, 126, 132, 168, 173]) are

easily accepted by general users. For example, Wang

et al. [167] created a horizontal timeline (Fig. 4A1).

Each row represents 24 hours of a day and each small

grid encodes the (numeric) traffic speed with the size

and color. Deng et al. [37] designed a folded timeline

(Fig. 4A2) to show the (boolean) occurrences of event

cascading processes. Each vertical bar indicates that

a cascading process occurred during that time period.

Andrienko et al. [6] adopted a calendar as the timeline

(Fig. 4A3), where the (categorical) clustering results

were encoded with the color.

Circular timelines are more artistic (e.g., in [26, 36,

146, 214, 218]). They are also easy to understand,

because they borrow the clock metaphor. For example,

Chen et al. [26] designed a wheel to show the periodic

temporal distribution of different mobilities (Fig. 4A4).

Similarly, in Deng et al.’s glyph [36], the circular

timeline showed the temporal occurrences of an air

pollution propagation pattern.

Line/Area chart. The line (or area) chart

uses lines or areas above a timeline to show the

temporal evolution. As a basic chart, it is widely and

undoubtedly accepted by general or expert users and

thereby can be safely used in many scenarios (e.g.,
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A2A1 A3

B

D

CA4

E

Fig. 4 Examples of timeline visualization in [167](A1), [37](A2), [6](A3), and [26](A4). Circular area chart in [178] (B). Streamgraph

in [51](C), Sankey diagram in [200](D). Marey graph equipped with KDE in [129](E).

in [2, 38, 163, 195]).

It is worth mentioning that a line (or area) chart

combined with the circular timeline can also produce

more expressive and artistic visualizations [178, 199,

212]. For example, Wu et al. [178] designed a glyph with

a circular area chart to show the temporal distribution

of mobilities (Fig. 4B). Zeng et al. [199] wrapped their

area charts of in and out volumes around pie charts to

design an effective glyph (Fig. 2A1).

Line charts can also visualize non-temporal data, if

the x-axis does not represent the time (e.g., in [7, 12]).

Streamgraph. Stacked area charts constitute a

streamgraph. Each stacked area is called flow. Besides

the quantity of each variable, a streamgraph also

displays each variable’s percentage to the sum of all

variables. Many researchers use streamgraphs because

of this advantage [51, 75, 154, 179]. Fig. 4C shows the

streamgraph in Guo et al.’s work [51]. It visualized the

evolution of different traffic flows.

Sankey. Compared with streamgraphs, sankey

diagram can show not only the evolution of object

groups but also the transitions between groups over

time [111, 200, 212]. The transitions are encoded by

the split and merging of flow. For instance, the sankey

diagram in Zeng et al.’s work [200] visualizes the paths

of passengers coming to a station and the corresponding

volume along the time (Fig. 4D).

Others. There are interesting urban temporal

visualizations [38, 49, 76, 100, 101, 129, 177, 195,

196, 198] that cannot be classified into the above

categories. For example, in Fig. 6A, the journeys

started from a station (the leftmost red node) are

organized according to the travel time in a parallel

isotime fashion. That is to say, the travel times from the

leftmost station to any station with the same vertical

position are the same. A Marey graph smoothed by

kernel density estimation (Fig. 4E) was designed by

Palomo et al. [129]. It visualizes the movement or

schedules of buses departing at different times. These

designs were generally proposed for specific data and

12
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problems.

3.3 Visualization of other properties

In addition to spatial and temporal information,

urban data will also have high-dimensional, relational,

and semantic information, etc. These data also

need to be presented and comprehended visually

so that analysts can comprehensively analyze urban

problems from more aspects. We identify nine popular

visualization components for non-temporal and non-

spatial data.

Bar chart. The bar chart is also a basic chart. It can

not only show the temporal information [4, 184, 195]

but also statistical distributions because its coordinate

axis can be discrete [63, 95, 96]. For temporal data,

the usage of bar charts is similar to the line (or area)

chart. We would not repeat here. For statistics, bar

charts can be used to display and compare the attribute

values of different items (e.g., performances of different

prediction models).

Bars for multiple attributes can be stacked as a

stacked bar chart. An interesting form of the stacked

bar chart is ValueChart [20] or LineUp [48] (Fig. 5 and

Fig. 9F) in decision making and ranking scenarios [95,

145, 152, 157, 170, 172, 173, 178], supporting intuitive

comparison of data points with multiple attributes. By

stacking the bars of attributes, the stacked bars’ heights

encode the sum of the corresponding attributes. In

LineUp, users are allowed to interactively choose which

attributes and bars to be stacked, thereby enabling

informed decision making and ranking.

Tree/Graph. The nodes in a tree or graph may

have geographic positions or not.

If nodes have geographic positions, tree and graph

visualizations usually serve the same functionalities as

they are on the map. The positions of nodes are free

by separating from the map [1, 163] and so that the

visualization layouts can be improved or optimized to

pursue aesthetics, legibility, and faithfulness. In the

transportation domain, researchers tended to use tree

visualizations to visualize the mobilities involving a

Fig. 5 LineUp adopted in [173]. The bars of the first two

attributes are stacked by users.

A

B

Fig. 6 In a public transportation system, journeys starting from

a certain station are organized into a tree [196]. The timeline

is from left to right. A graph visualization shows the traffic

linkages of different regions [61]

target location [178, 196, 198]. The target location was

viewed as the root nodes of the tree. For example, in

Fig. 6A, Zeng et al. [196] employed a tree visualization

to organize the journeys of a transportation system that

started from the leftmost station.

These visualizations are usually coordinated with

other multiple views and thus can be related back to

the spatial context. Some approaches copied the graph

visualizations directly from the map as a separate view,

in which free layouts provide clear appearances for

investigation [36, 61, 82, 167]. Fig. 6B shows the graph

visualization by Huang et al. [61]. Each edge indicates

the linkage between traffic regions.

If nodes are without geographic positions, they

usually represent the relationships between process

status or data attributes. For example, tree

visualizations visualized and guided the processes of

steerable data partitioning in [50, 96]. Fig. 11 is the

interface of TPFlow [96]. In Qu et al.’s method [136],

graph representations were adopted to present the

correlation of different air pollutants.

Some studies transformed graph data into other

forms, such as tabular [37, 38]. We would not discuss

them here.
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Scatterplot. The scatterplot is another basic chart.

It can unveil interesting patters, such as, clusters,

outliers, trends, and correlation [165].

In a traditional scatterplot, the x-axis and y-

axis are assigned with semantic dimensions [128],

for example, driving velocities and distances of

vehicles [160] (Fig. 7A1). Similarities and correlations

of the dimensions can be identified. In addition,

some scatterplots are generated by reducing the

dimensionality of high-dimensional or embedded data,

e.g., in [214](Fig. 7A2). Both the x-axis and y-axis have

no specific semantics. So, they are only used to show

clusters and outliers. Nonetheless, due to its capability

of summarizing massive high-dimensional data, such a

visualization is increasingly popular in urban analytics

encountering a sheer volume of data.

Some approaches replaced the projected dots with

the glyphs encoding the original dimensions, e.g.,

in [95](Fig. 9D). In this way, scatterplots become more

informative. Note that using glyphs in a scatterplot

may cause occlusion and clutter issues. Therefore, it is

suitable when the amount of data is small.

Parallel Coordinate Plot (PCP). High-

dimensional attributes of urban data are commonly

seen. They sometimes are neither spatial nor temporal,

but are important in urban analysis.

PCP is the most widely used high-dimensional

visualization besides the projection-based scatterplot in

urban visual analytics. For example, every trajectory

was described from non-geographical dimensions of

PCPs [3, 32, 49, 51, 152, 177, 211]. Fig. 7B shows the

example from [3]. Attributes that describe physical

B

A2A1

Fig. 7 Examples of scatterplot in [160](A1) and [214](A2). An

example of PCP in [3].

urban environments quantitatively were encoded with

PCPs in [43, 203]. PCPs, together with the 3D

Map, supported both quantitative and qualitative

understanding of the urban environment.

PCPs can handle more dimensions with less space

than scatterplot matrices. Besides, they are easy to

learn and understand compared to glyphs.

Radar chart, glyph, and scatterplot matrix.

These visualizations are also suitable for high-

dimensional data. Radar charts can be seen as a

circular PCP with radar metaphor but handle fewer

dimensions than PCP. They usually do not support

user interactions. But due the universality and artistic

circular shape, radar charts can be seen in many

studies [57, 100, 115, 214]. Glyph-based designs are

usually placed on the map, as we have discussed

before. Some glyphs are put outside the map, such as

scatterplots after projected [95] or side by side [36, 76].

These layouts can support better comparisons. By

contrast, the scatterplot matrix was less used in urban

visual analytics [145], which may be due to the space

inefficiency.

Matrix. Matrix visualizations are a well-arranged

representation usually equipped with color encodings.

In urban visual analytics, matrix visualizations can

visualize location pair’s relationships, where each row

or column represents a location, and each cell encodes

the relationship between the row and column. For

example, each cell encodes the traffic volume from the

row location to the column location [152, 172, 188]

or the interconnection between the row and column

locations [178, 218]. Besides, there are also some

classic uses of matrix visualizations, such as showing

classification performances (confusion matrix) [55] and

statistics [49, 170].

Wordle. Wordle or word cloud [148] is usually

used in text-based urban visual analytics [21, 26, 32,

74, 116]. It assists in inspecting massive amounts

of original text information, usually combined with

keyword extraction.

Video. Video is not essentially a visualization

method. Nonetheless, in urban analytics, video is an

important way to provide raw information. It is also

the most familiar component for many urban experts.

Some researchers will add a video component to their

visual analytics approaches, allowing experts to verify

the conclusions obtained [47, 55, 66, 72, 123, 133].

4 Computational analysis method

This section reviews the computational data analysis

methods used in urban visual analytics. We intend
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Tab. 4 Computational methods in urban visual analytics.

Computational methods Example Papers

Learning-based

Clustering
[1, 6–8, 26, 49, 61, 71, 77, 82, 98, 100, 101, 110, 111, 117,

146, 149, 152, 159, 161, 178, 179, 191, 204, 212]

Classification [14, 47, 66, 92, 112, 132, 145, 191]

Representation [36, 47, 55, 127, 214, 218]

Dimensionality reduction [36, 76, 95, 184, 214]

Regression [12, 14, 38]

Forecasting [72, 144, 201]

Statistical

Kernel density estimation
[39, 42, 69, 73, 112, 113, 117, 118, 120–122, 126, 129, 146,

179, 214]

Matrix/Tensor/Time series decomposition [18, 21, 67, 96, 117, 119, 122, 195]

Deviation-based anomaly detection [18, 21, 80, 111, 118, 119, 146, 149, 163, 168]

Keyword/Topic extraction [4, 21, 26, 32, 63, 74]

Frequent pattern mining [1, 36, 76, 184, 198]

Peak/Periodicity/Correlation of time series [9, 38, 50, 120, 163]

Metric/Indicator/Factors calculation [32, 57, 61, 81, 98, 108, 112, 132, 136, 177, 211]

Rule-based

Association [29, 32, 42, 63, 71, 76, 178, 184, 199]

Summarization [6, 12, 105, 117, 118, 133, 159, 169, 198, 201, 211]

Map matching [3, 32, 72, 98, 103, 107–111, 135, 146, 160, 167]

Traffic modelling [12, 72, 167, 168]

Data cleaning [25, 115]

Object tracking [123]

Heuristic search [37, 91, 95, 105, 172]

Simulation-based [2, 36, 43, 69, 125, 134]

Mathematical programming [80, 82]

Index
[3, 29, 63, 75, 95, 103, 108–111, 160, 161, 173, 184, 198–

200]

Query [3, 28, 44, 63, 73, 127, 145, 160, 161, 173, 200]

to reveal the commonly used methods and their

purposes. Practitioners can build on these well-

established methods to develop intelligent analysis

solutions. Seven categories are identified in this survey.

Table 4 summarizes the computational methods.

4.1 Learning-based

Learning-based methods’ parameters are learned

from the inherent distribution of given data. These

methods do not require much prior knowledge to learn

the intrinsic patterns of the data that provide useful

insights or aid in predictions.

Clustering. Clustering is a basic data analysis

operation, which divides data into multiple clusters

by learning the similarities of data. The data items

in the same cluster are similar in some aspects.

Such an operation can reduce the amount of data

to be analyzed and provide exploration guidance in

visual analysis. As long as a similarity measure is

well defined, clustering can flexibly apply to various

kinds of data, such as events [117], regions [179],

and trajectories [49]. Popular clustering techniques

are DBSCAN (e.g., in [61, 146]) and k-means (e.g.,

in [117, 179]).

Classification. Classification refers to labeling data

with a given set of categorical tags. In the early years,

researchers tended to use traditional classification

techniques. such as, Support Vector Machine for

predicting non-visual city attributes [14], Conditional

Random Field for classifying abnormal trajectories [92],

and random-forest for classifying locations into work,

home, and others [191]. As powerful neural

networks are proposed and popularized, neural-

network-based classifiers are increasingly applied to

urban analytics, such as sentiment classification of geo-

tagged social media [112], human-scale visual feature

identification [145], traffic light detection [47], and

autonomous driving decision [66].

Classification techniques rely on the acquisition and

quality of labels. Active learning [92, 191] or semi-

supervised learning [132] is an efficient mechanism for

obtaining labels. Briefly, model trainers first label a

portion of data. The model trained on these data is

used to label another portion of data. Repeat this

process until the number of training samples meets the

requirements.
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Representation. Representation learning embeds

data into high-dimensional space by vectorization [217].

In this space, adversarial examples can also be

generated for adversarial learning [47, 55]. The vectors

also capture the inherent relationships between data.

Reducing the dimensionality of the data vectors to a

low-dimensional space can generate an overview for

further exploration.

Representation learning can be based on

autoencoder [47, 55] or word2vec [36, 214, 218]. Those

word2vec-based make full use of the characteristics

of spatiotemporal data. For example, in [218], each

location is cast as a word, and each trajectory is cast

as a sentence comprising the words it passes. Thus, the

latent semantics of locations are learned like learning

the semantics of words.

The above methods often take the input itself or the

context of the input as the output, so avoid the labeling

process to obtain labeled samples. Some approaches

leveraged the models pre-trained with labels in the

open-source community. For example, Miranda et

al. [127] input street images into pre-trained image

recognition models and obtained the latent vector

representations for these images from the hidden layers.

Dimensionality reduction. Dimensionality

reduction transforms the ubiquitous multi-dimensional

data into low-dimensional data. It is usually combined

with 2D scatterplots, which is useful and popular in

urban visual analytics [95, 170]. Some high-dimensional

embeddings also require dimensionality reduction to be

visualized, as we mentioned before. Popular techniques

include PCA [47], MDS [95, 184], and t-SNE [36,

76, 214]. Currently, t-SNE is the most effective

dimensionality reduction method, particularly when

dealing with high-dimensional and large-scale data.

Regression. Regression refers to estimating the

relationships between variables [12, 14, 38]. For

example, in [38], the Granger causality test based

on vector autoregression was adopted to detect the

causal relations between time series. In [12], a

polynomial regression model was applied to capture the

dependencies between the traffic intensity and velocity.

Forecasting. Forecasting refers to predicting the

future status. Understanding future development

trends is an essential prerequisite for wise urban

planning. Time series forecasting based on deep

learning has achieved great success. Hence, the

corresponding visual analytics has also emerged [72,

144, 201]. Forecasting belongs to the supervised

learning. Fortunately, training samples with labels (i.e.,

future situations) for forecasting can be constructed

through sliding windows on the time dimension,

avoiding the labeling process.

4.2 Statistical

Statistical methods mainly build on statistics to

process data. Because of mathematical theories, such

methods are often explainable and can guarantee the

reliability of analyses.

Kernel density estimation (KDE). KDE

estimates the probability density function of discrete

data to characterize them in a continuous way.

KDE can be directly applied to spatial events [120],

locations [121], geo-tagged social media posts [112],

trajectories [95, 173], and bus schedules [129],

generating clear overviews without clutters.

Furthermore, KDE has been extended for many

scenarios. Feng et al. [42] proposed a topology density

map that considers topological conditions of the road

network. Li et al. [73] proposed a peak-based KDE

that avoids manually setting the band width.

KDEs are usually equipped with heatmap

visualizations (e.g., in Fig. 1C1 and C2). There

are also studies that use KDEs not for visualization.

Data processed by KDE can facilitate further

computation and analysis [118, 122], such as,

sampling [214], reducing errors [146], prediction [117],

flow map extraction [69] and topology feature

extraction [39, 113, 126]. For example, Lukasczy et

al. [113] used KDE to generate the scalar function

of discrete spatial event data. The scalar function

enabled the following topology analysis.

Matrix/Tensor/Time series decomposition.

We classify matrix factorization, tensor decomposition,

and time series decomposition into this category as they

decompose data into multiple components.

Zanabria et al. [195] modeled crime data as a matrix

in which each row represents a region and each column

represents a time slice. Then, matrix factorization

was applied to this matrix and extracted the spatial

and temporal patterns represented by decomposed

matrices. Tensor decomposition techniques in [18, 96]

mathematically extended matrix factorization. In these

two studies, spatiotemporal data were modeled as

tensors. Latent spatial and temporal patterns were

then extracted by decomposing the tensors.

In contrast, the time series decomposition,

particularly the Seasonal-Trend Decomposition

(STL), works on time series data. STL decomposes a

time series into multiple ones with temporal patterns,

such as, yearly seasonality, day-of-the-week effect, and

global trend [21, 117, 119, 122]. Anomaly detection
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and prediction can be performed given the decomposed

time series.

Deviation-based anomaly detection. For the

temporal perspective, determining whether a data

point is abnormal is generally based on how much

it statistically deviates from other historical ones.

To compare with historical data, many methods can

be used, such as Local Outlier Factor (LOF) [18],

cumulative summation (CUSUM) [118, 119],minDistort

algorithm [168], and Extreme Value Theory [146]. From

the sampling perspective, anomaly detection can also

be accomplished by measuring the deviation of a data

point in the samples [21, 80, 149].

Keyword/Topic extraction. This type of method

extracts frequently occurring keywords or implicit

topics from document corpora. The corpora can

be directly from text [4, 21, 26, 74] or textualized

trajectories after rule-based association [32, 63] (see

Section 4.3). For example, Chen et al. [26] extracted

frequent keywords for locations from the microblogs

there, enabling semantic analysis of movement

data. Another different example is Huang et al.’s

approach [63]. Each trajectory was assigned with the

names of the streets it passed and thereby was regarded

as a sentence. This process generated a trajectory

corpus. Afterward, Latent Dirichlet Allocation (LDA),

a topic modeling technique, extracted the latent topic

and related keywords for querying and reasoning

mobility patterns.

Frequent pattern mining. Frequent pattern

mining methods can extract significant (frequent)

patterns with sufficient occurrences from various types

of urban data, such as transactional [76, 184], and

sequential [1, 198], and graph [36] data. Frequent

patterns summarize massive data, which prevents users

from being overwhelmed. For example, Deng et

al. [36] adopted frequent subgraph mining to extract

the propagation patterns from numerous propagation

processes of air pollutants. These patterns were then

organized and visualized for analyzing the air quality

deterioration on a large spatiotemporal scale.

Peak/Periodicity/Correlation of time series.

Time series data is one of the important data types

in urban analysis. Correlation analysis and periodicity

identification are common analysis tasks. Correlation

analysis is usually based on Pearson’s r [38, 120, 163].

Information theory can also be applied [50]. Periodicity

can be identified using the Fourier Transform [9].

Metric/Indicator/Factors calculation. Some

indicators need to be extracted through statistical

methods. Entropy based on the information theory

is popular because it can leverage the inherent data

distribution to estimate the amount of information [32,

98, 112, 132, 177, 211]. The richer the amount

of information, the more worthy of analysis. For

example, Zheng et al. [211] used entropy to quantify the

interestingness region by incorporating spatiotemporal

and mobility-related attributes. Other calculations

include but are not limited to estimating the road

importance by the PageRank algorithm in a graph-

represented road network [61] and deriving correlation

metrics between dimensions in air pollution data [136].

4.3 Rule-based

Rule-based methods incorporate effective problem-

or domain-related rules to guide data analysis.

Similar to statistical methods, rule-based methods are

explainable. Besides, they are more appreciated by

domain experts due to their ability to incorporate

domain knowledge.

Association. Many rule-based approaches can

associate different urban data based on their co-

occurring observations, which enriches data and

discloses the latent relationships of various urban data.

Associating POIs with mobilities is the most common

association operation in urban visual analytics. In [32,

63, 71, 199], geographic positions of movement records

were assigned with a set of POIs spatially near the

positions. Besides, POIs can be associated with the

road network, enriching semantics to urban facilities

for accessibility analysis [42].

The spatiotemporal co-occurrence rule can also apply

to associating people with people [29, 178], value ranges

with value ranges [184], and events with events [76].

Summarization. Summarization procedure is often

demanded in visually analyzing massive urban data.

Adrienko et al. [10] demonstrated that movement

summarization is an important step towards scalable

and effective urban analyses. In many practical

approaches, mobilities were aggregated by their origins

and destinations and summarized as the flow between

them [6, 12, 105, 159, 211]. Visiting sequences were

aggregated and summarized as a visual summary

according to their shared parts [198].

The aggregation of spatial geo-tagged data [117,

118, 169] and spatial regions [159, 201] in varied

granularities are also seen in many approaches. These

summarization procedures can reduce visual clutters on

the map and sometimes protect data privacy.

Map matching. Map matching is a fundamental

process for movement analysis. Position shifts exist in

the movement data collected by GPS devices. Map
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matching maps these GPS records onto real road

networks because vehicles and people can only move

on the roads, generating clean and usable movement

data. Given that, many applications using GPS data

adopted map matching techniques (e.g., [3, 103, 167]).

Heuristic search. Optimal solutions to some urban

analysis problems cannot be obtained directly and

quickly. Thus, researchers incorporated some rules into

heuristic search methods to solve the problems.

Greedy search is one of the most popular heuristic

search methods. In the billboard selection [95], the

billboard locations should cover as many trajectories

as possible to have high exposure. Such a problem

is essentially the K-cover problem [85, 86]. In the

cascading pattern inference [37], extracting cascading

patterns that best describe the observed event data

is also the K-cover problem [87]. In these scenarios,

greedy search methods were because of the NP-

Hardness of the K-cover problem.

Heuristic search can also be used in improving a bus

network. In Lorenzo et al.’s AllAboard [105], the public

transportation system can be improved by minimizing

users’ travel times under constraints. Lorenzo et al.

considered it a separable programming problem and

adopted a heuristic procedure to approximately solve

it. In Weng et al.’s BNVA [172], the bus network

improvement was seen as a multi-objective optimization

problem considering, such as cost, passenger volume,

and directness. Weng et al. used a heuristic

search called Monte Carlo tree search in this context.

Besides, heuristic strategies can be used for OD-flow

sampling [214] and majority voting of weather forecast

calibration [91].

Traffic modeling, data cleaning, tracking.

Domain-specific rules also guide traffic modeling, data

cleaning, and tracking.

Vehicles must run on the road based on traffic

rules under physical constraints. Therefore, traffic

congestion propagation can be estimated based on the

topology of the road network [72, 167]. Moreover, the

road traffic was simulated based on the similar heuristic

rules [12, 168]. Some data cleaning operations are

also based on rules. Ma et al. [115] defined the Ping-

Pong effects in the mobility data as frequently switching

between different locations and proposed detection and

elimination algorithms. Chen et al. [25] concluded

five types of uncertainty in human behavior data

and developed a semi-automatic processing framework.

Finally, Meghdadi et al. [123] tracked people from

consecutive video frames based on the continuity of

movement.

4.4 Simulation-based

Simulation-based methods refer to those simulating

real-world conditions based on physical phenomena.

They effectively recover the real-world urban situation

and analyze the development and evolution.

Ray tracing was utilized to compute the impacts

of new buildings in terms of shadow [125] and

visibility [43]. Gravity model was utilized by Kim

et al. [69] to construct flow field from discrete

event data. The particle advection technique helps

generate and visualize the 2D vector fields of traffic

flow [134]. The aforementioned methods have potential

generalizability. Domain-specific models based on

epidemiology and fluid mechanics were also employed

for epidemic response evaluation [2] and air pollution

propagation modelling [36], respectively.

4.5 Mathematical programming

Some analysis problems can be characterized as

operation research problems and be solved via

mathematical programming. Although mathematical

programming methods can obtain globally optimal

solutions, they are used less often, perhaps due to their

inefficient performance on large amounts of data.

MaraVis [80] computed the optimal camera path

for monitoring marathon games by solving a traveling

salesman problem. SEEVis [82] also computed

the optimal camera path but for exploring human

movements during an emergency evacuation.

4.6 Index and query

Index techniques guarantee efficient data retrieval,

computation, and visualization.

Many urban visual analytics approaches

incorporated well-established spatiotemporal

index methods, such as B+ tree [184], quad

tree [29, 108, 111], octree [145], k-d tree [44],

locality sensitive hashing [127], and space-time

cube [28]. In addition to these general indexes,

there are indexes tailored for trajectory computation

and visualizations. Location-trajectory indexes

enable efficient trajectory retrieval by the passing

locations [95, 103, 160, 161, 173, 198, 200].

Furthermore, trajectories can be indexed by text,

after the locations they pass by are textualized by

associating POIs [3, 63]. With these indexes, the

system can support flexible semantic-based queries.

With the increasing amount of urban data, many

advanced index techniques are proposed in the

database community [83, 84]. Being aware of

the uniqueness of visualization and visual analytics
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tasks, visualization researchers proposed big data

indexing and management approaches for visualization

purpose [34, 40, 73, 75, 93, 94, 124].

5 System

Due to the spatiotemporal, heterogeneous, uncertain,

and dynamic characteristics of urban data, machines

and human intelligence are often required to be

integrated into the analysis process. This section

discloses how computation and visualizations constitute

a human-in-the-loop urban analytics system. Unlike

the previous survey [210], our survey focuses on the

role of computation and visualizations and how they

interact each other in a system. Four categories are

identified based on the combination ways of models

and visualizations: visual analytics without models,

post-model visual analytics, model-integrated visual

analytics, and visual analytics-assisted models.

Note that the models mentioned in this section may

comprise multiple computational methods in the last

section. For example, although the location section

model by Liu et al. [95] comprises map-matching, index,

and optimization modules, it is viewed as one model

from the perspective of an entire system.

5.1 Visual analytics without models

The systems in this category exclude models. They

are suitable for those scenarios where the raw data

does not need to undergo complex computational

transformations. Urban analyses mainly rely on well-

designed data visualizations.

Individual visualizations. For an emerging field

and problem, data visualizations contribute enough

to the visualization community and domains [4, 136,

139, 158, 197]. The most obvious evidence is in

the study of human mobility visualization. In the

early years when mobility data started to be collected,

the presentation of mobility data provided sufficient

insights [139, 158, 197]. Similar evidences can be

observed in air pollution [136] and geo-tagged social

media analyses [4].

Coordinated visualizations. As the data

becomes increasingly abundant and the tasks

become increasingly challenging, multiple coordinated

visualizations become demanded [22, 29, 51, 77, 98,

109, 110, 115, 121, 133, 135, 154, 163, 169, 170, 179]. To

handle large-scale data, these systems generally follow

the workflow of “Overview first, zoom and filter, then

details-on-demand [147].” For example, VisMate [77]

firstly provided a spatiotemporal summary of climate

data collected in all meteorological stations. Then,

Fig. 8 The views in AirVis [36] from left to right hierarchically

organize numerous propagation patterns of air pollution.

users were allowed to zoom into a station cluster of

interests and finally individual stations. Similarly,

Liu et al.’s method [98] allowed users to analyze the

numerous trajectories from the region, trip, and road

perspectives.

Completing complex tasks also raises the same

requirement of coordinated visualizations, although

the data is not too large. For instance, Alvis [133]

coordinated multiple visualizations to support tasks

of tunnel surveillance, such as navigation, event

prioritization, video retrieval, and situation predictions.

5.2 Post-model visual analytics

In this category of system, the role of computational

models is to discover knowledge behind urban data in

advance. Once the model has run, it rarely needs to

be adjusted and run again. Visualizations are designed

to organize and present the discovered knowledge. We

further classify these systems based on the specific

purposes of models into three types, namely, pattern

extraction, item detection, and data enrichment.

Pattern extraction. Models first extract many

patterns from original data. Visual analytics systems

are developed for understanding these extracted

patterns, such as co-occurrence [178, 184, 212],

mobility [49, 69, 159, 198, 214], air pollution

propagation [36], and social media distribution

patterns [21, 74, 75, 112]. The huge amount of patterns

may hinder identifying and reasoning valuable ones.

A well-designed pattern organization is desirable to

this end. For example, Wu et al. [178] extracted co-

occurrence patterns in human mobility from trajectory

data and designed visualizations for pattern exploration

from multiple levels and perspectives. Deng et

al. [36] extracted massive propagation patterns of air

pollutants from the ubiquitous propagation processes.

They used hierarchical organization for effective top-
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Fig. 9 Interface of SmartAdP [95], a visual analytics system for selecting billboard locations based on taxi trajectories.

down exploration (Fig. 8).

Item detection. Models can detect important

ones from a collection of data items. In urban

scenarios, it is common to detect important locations

from the vast geographic space [7, 8], such as those

with frequent movement [211], traffic jams [132],

prominent pulses [126], and crime hotspots [113,

118]. Starting from these locations, users utilize

visualizations to understand these locations and what

happened there. For instance, in Pi et al.’s traffic

congestion analyses [132], the roads detected with

potential traffic jams and the inferred causes provided

the analysis entrance.

Data enrichment. In many systems, models enrich

original data by deriving the additional information [71,

123, 145, 177, 196, 199, 218], such as transportation

system metrics [42, 61, 105, 203], clusters [32, 67, 149,

152, 204], and temporal prediction [117].

Take the transportation network diagnosis as an

example. Accessibility [42] and centrality [61] of road

networks were calculated and visually encoded together

with the networks. Human mobilities were estimated

and encoded into the public transportation networks

to diagnose the system efficiency [196](Fig. 6A). The

additional information provided important implications

for understanding transportation systems, which

cannot be supported only by visualizations.

5.3 Model-integrated visual analytics

The utility and intelligence of the system can

be significantly improved by tightly integrating

computational models into visual analytics.

Visualizations and computational models tend to

interact frequently. Here are some typical scenarios.

Problem-specific analysis. In many specific

problems, users need to determine a subset of data of

interest through spatial [1, 11, 37, 81, 95, 108, 172, 195],

temporal [100, 107], spatiotemporal [38, 111, 122, 173],

or other property visualizations [76]. The subset is fed

into the models, and the outputs are visually displayed.

Unlike post-model visual analytics systems, these

systems require visualizations to determine the inputs

of the model. For instances, the billboards should

be placed in a solution area and viewed by target

audiences from a target area. Thus, SmartAdP [95]

firstly required users to specify target and solution

areas on a map based on a visual trajectory overview

(Fig. 9B). Afterward, candidate billboard locations

are extracted, given the areas and trajectories. The

next step is to visually compare and evaluate these

candidate locations (Fig. 9D, E, and F). In the study

of BNVA [172], users were firstly required to conduct

network-level analysis on the map and identify the

bus routes with low efficiency. Then, an optimization

method manipulated the target bus route and users can

visually evaluate the optimized routes.

Multi-steps analysis. If an analysis workflow

contains multiple steps, each step may involve models

and visualizations. In the study of trajectory data

cleaning [25], users iteratively interact with different

modules of the model through visualizations to address

the uncertainty of different dimensions.

Iterative analysis. Another case is that the

analysis pipeline contains a loop where models

can iteratively learn users’ feedback and update

accordingly [18, 92, 191]. Take anomaly detection as

20
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Fig. 10 Interface of the geo-context aware diagnosis systems

for autonomous driving models [66]

an example. Liao et al.’s method [92] adopted active

learning that can learn the samples labeled by users

interactively. Cao et al.’s method [18] also accepted

user feedback through Bayesian theory. In this way,

models perform better under the supervision of human

knowledge.

Query-based analysis. Visual query allows users

to repeatedly modify query conditions and issue queries

to obtain desired results [3, 44, 63, 68, 73, 127, 160,

161, 200]. For example, Ferreira et al. [44] allowed

users to query taxi trips in different geographic areas.

In [160], two queries were issued to identify a low-

capacity watershed-like intersection.

Monitoring. Urban monitoring models should run

continuously [18, 72, 80, 82, 181]. The time-varying

state of the city is reflected by the data collected by

the terminal sensors. To monitor cities in (near) real

time, the models should continuously integrate the

streaming and historical data and output new results,

such as predicted traffic congestion [72] and detected

anomalies [18].

5.4 Visual analytics-assisted models

Urban visual analytics can be a great aid if the

models serving the cities need to be diagnosed,

adjusted, or improved. In this context, models’ better

performances are the purpose.

The representative examples are model diagnoses [47,

55, 57, 66, 201] and steering [12, 50, 91, 96,

120]. For example, autonomous driving models and

systems include artificial-intelligence-based decision-

making models that run in the urban space. Diagnose

and improve them demand visual analytics system with

an urban context [47, 55, 57, 66]. Fig. 10 shows

Jamonnak et al.’s system for autonomous driving model

diagnosis [66]. In this system, users can assess model

performances within the spatial context.

Fig. 11 Interface of TPFlow, a visual analytics system

that supports steering tensor decomposition and analyzing

spatiotemporal patterns [96].

Spatiotemporal analysis models may require

interactive visualizations to steer, such as the voting

framework for weather forecast calibration [91],

tensor decomposition for spatiotemporal pattern

extraction [96], traffic analysis, and forecasting [12].

For example, Liu et al. [96] designed the tree in Fig. 11

that can be split and expanded interactively to steer

the tensor decomposition. In a model steering process,

every step of the model is transparent, controllable,

and reliable to analysts. Models move towards better

under the supervision of human knowledge.

6 Challenges of designing urban visual

analytics

This section summarizes four high-level challenges

of designing a visual analytic approach and discusses

feasible solutions.

6.1 Problem characterization

Urban visual analytics is an application-driven field.

After domain experts put forward their problems

and requirements, visual analytics designers must

disassemble and characterize them into problems that

can be addressed by visualization techniques and

computational methods if needed. Characterizing the

problem well requires close and long-term collaboration

with experts [143]. Such a challenge generally exists in

the development of other visual analytics methods [41,

182].

6.2 High-dimensionality and heterogeneity

Urban data usually involves high-dimensional and

heterogeneous attributes, such as spatiotemporal [76],

text [75], image [127], and 3D physical models [43],
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which poses challenges for urban data visualization.

Two strategies can solve these challenges.

The first one is to coordinate multiple visualizations

in a visual analytics system. In this way, different

visualizations show different and heterogeneous

dimensions of urban data, for example, in TPFlow [96]

(Fig. 11) and StreetVizor [145]. Although this strategy

is effective and widely used, designers should keep

the interaction and context switching costs in mind.

The second one is to design integrated visualizations.

Different aspects of urban data are encoded together

intuitively. Urban data can be analyzed within

the same view and context. For example, Sun et

al. [153] embedded the temporal data into graphically

broadened roads. Glyphs in Fig. 2A1 visualize

spatial, temporal, and categorical attributes [199].

This strategy is more difficult than coordinating

visualizations because it needs to leverage limited

visual channels appropriately in a confined space.

6.3 Scalability

Ubiquitous sensors in urban environments monitor

the city all the time, generating massive amounts of

raw data. Furthermore, the patterns hidden behind

sometimes can be numerous. For accommodating the

sheer volume of such urban data, scalability issues

must be addressed from visualization and computation

perspectives.

Visualization. To avoid being overwhelmed,

users expect the data and visualizations to be well

organized. The most famous organization follows

the information-seeking mantra [147]: “overview first,

zoom and filter, then details-on-demand.“ Designing an

overview and drill-down interactive exploration is what

designers work on according to domain requirements.

If an inherent hierarchy exists, the corresponding

hierarchical organization is desirable, for example, in

AirVis [36] (Fig. 8) and BNVA [172]. Such a mechanism

of hierarchical exploration can be called the level-of-

detail mechanism [184].

In addition, graphic optimizations can make the

visualizations more readable by reducing visual

clutters. For example, edge bundling techniques [56]

can bundle massive trajectories [202]. Element ordering

can reduce visual wiggles and crossings [104, 156].

Sampling techniques that consider visual perception

can reduce visual occlusion [162, 193, 206, 207, 214–

216].

Computation. Excessive amounts of data also slow

down computation and prevent seamless interactions.

Therefore, index techniques [34, 40, 73, 75, 93, 94, 124],

progressive analysis [96, 150, 172], approximation [131],

GPU rendering [78, 79], etc., can be incorporated into

systems for accelerating the computation. Effective

indexes ensure fast access to data. Approximation

sacrifices a small amount of accuracy to improve

computational speed. The progressive analysis

returns the results continuously rather than the final

result obtained after a time-consuming computation.

Progressive analysis can be adjusted or stopped on the

fly. GPU rendering focuses on efficient rendering of

graphic elements rather than data computation.

6.4 Uncertainty

Urban data can be inherently uncertain due

to insufficient spatial and temporal granularity or

imprecise and errors at sensor terminals [25, 63, 107].

The uncertainties can propagate during data processing

or transformations, which may lead to wrong results.

Urban experts need to access these uncertainties and

thereby perform reliable analysis and make informed

decisions.

There are two feasible actions to alleviate the

uncertainty issue. The first one is to design uncertainty-

aware visualizations [46, 62, 99, 141] for those key steps

in data processing or transformations. For example, in

the cascading pattern inference [37], the occurrences of

instances that contradict the pattern inference result

were visually exposed to users. In the natural-language-

based trajectory query [63], a “relevance tree” was

designed to show the uncertain semantic matching

between natural language and POIs. In movement

semantics enrichment [71], a gradient colormap is

applied to visualize the uncertainties of assigning a POI

to a destination point of movement.

Another one is to allow users to inspect the raw data

for validation. This action is naive but practical in

many systems [37, 38].

7 Future directions and opportunities

Although urban visual analytics has made

remarkable achievements towards smart cities, there

are still gaps to be filled. The ever-changing urban

life also raises new requirements for urban visual

analytics. This section intends to set to the ball rolling

by illustrating the gaps and requirements.

7.1 Domain problem

There are two potential domain problems that could

be investigated in the future.

In-situ real-time decision-making. In the traffic

domain, few tools support in-situ real-time decision-
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making based on effective urban online monitoring and

offline diagnoses, although about half of the urban

visual analytics studies were concerned with traffic

problems. Improving traffic efficiency is the most

important issue in the traffic domain. When congestion

is detected in real time, what kind of diversion measures

can the department take to alleviate the congestion

and improve traffic efficiency, and which one is the

best? Such a scenario requires traffic monitoring and

prediction, mobility analysis, and comparative analysis

to be supported in visual analytics.

City-wide disease spreading. Affected by

COVID-19, the issue of public health safety has been

deeply rooted in the hearts of the people. There are

many visualization methods for studying the spread

of diseases [2, 15, 117], but few focus on infectious

diseases in a fine-grained way in urban space. The

health department may need an uncertain-aware visual

analytics system that integrates mobility patterns and

disease transmission models to assess potential risks of

geographic regions and identify vulnerable individuals.

At the same time, privacy protection is an important

issue in such public health analyses.

Finally, we consider that the rapid development of

urban analytics in the traffic domain can partially

be attributed to public traffic datasets. We call on

practitioners of urban analytics, whether in industry or

academia, to release more high-quality and interesting

data [90, 209, 213] and thereby promote the urban

analytics research in various domains.

7.2 Visualizations

Two types of visualization techniques are worth

investigating in the future.

Integrated visualization. We reached a consensus

with the previous surveys that urban data can

always be classified into spatial, temporal, and other

properties [27, 210]. Many spatial, temporal, and other

information visualizations have been designed for these

three kinds of data, respectively. It is non-trivial to

propose something novel given these excellent visual

designs. Nevertheless, it is still a promising research

direction to effectively integrate spatial and temporal

information together [153, 158, 185, 186].

AI4VIS. Besides, rich visualization datasets [35, 58]

and powerful artificial intelligence (AI) models have

yielded an emerging and promising research topic called

AI4VIS [166, 176]. That is, researchers start to

leverage AI to generate or recommend visualizations

given an input dataset. The existing AI4VIS methods

mainly focused on tabular data and basic charts

(e.g., bar charts) for information visualization, while

the visualizations of spatiotemporal data in urban

space were ignored. We can imagine that in the

future, a set of effective spatiotemporal visualizations

can be automatically generated and coordinated for

urban visual analysis only based on simple inputs

like a dataset and tasks. Realizing such a vision is

also challenging and requires long-term efforts from

researchers.

7.3 Computational methods

Computational methods tend to be interpretable and

tailored to scenarios.

Interpretable computation. Deep learning

is still rarely used in urban visual analytics,

although it is already in full swing in the field

of artificial intelligence [192]. Obtaining deep

insights into improved cities relies on a comprehensive

understanding of urban data through such as frequent

occurrences by frequent pattern mining, various

indicators based on rules, and spatial distribution

by KDE. However, deep learning currently mainly

supports prediction, classification, and representation,

which are only a small part of the analysis functions.

Besides, its limited interpretability prevents its use in

a user-center system. Based on these observations, we

believe that interpretable computational methods, such

as these statistical and rule-based methods, will still be

prevailing in urban visual analytics in the foreseeable

future. At the same time, practitioners should make

full use of the powerful capabilities of deep learning in

prediction, classification, and representation.

Scenario-tailored computation. Visualization

researchers proposed many practical computational

methods, some of which were extended by existing

ones. Urban visual analytics research aims to design

human-in-the-loop solutions for improved cities rather

than developing innovative computational methods.

Nonetheless, a user-center system may raise unique

requirements on computational methods, such as being

fast enough to support seamless interaction [172, 173]

or being steerable [96, 131]. These requirements

motivate visualization researchers to adapt state-of-

the-art computational methods or couple them with

visualizations, thereby improving their practicality and

effectiveness in urban visual analytics.

7.4 System

Among the four types of systems, the type of visual

analytics-assisted model has a better prospect as

the other three are well established.
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Many complicated models, particularly those based

on deep learning, are increasingly applied in urban

scenarios, such as autonomous driving, trajectory

prediction [114], and urban flow analysis [88, 89,

130]. Despite the great performances they achieved,

the dynamic and complex urban environment poses

challenges for deploying these models in the real

world [57, 66, 201]. Urban experts require testing and

debugging them in real scenarios, i.e., model diagnosis.

Besides, if users directly manipulate an advanced

model, the model can achieve better performance

than itself only. Such a model steering mechanism

is an effective way to involve human knowledge into

machine intelligence. Users and machines communicate

closely through interactive visualizations. The obvious

advantages of model diagnosis and steering will

encourage this kind of urban visual analytics system,

especially if models become more powerful but complex.

7.5 Analytics environments

The development of hardware and collaboration

technologies has unveiled future analytics environments

for urban visual analytics, such as immersive,

collaborative, and mobile environments.

Immersive environment. In recent years, the

rapid development of mixed reality technologies has

made immersive urban visual analytics possible [30, 33,

64, 151, 189]. Mixed reality devices can significantly

empower urban analysts with a sense of presence by

integrating the critical 3D context [31]. Nonetheless,

immersive urban visual analytics is still in a very

early stage. We have not seen an immersive tool that

supports the complex urban analysis tasks like those

have been done in the desktop environment. This

puts forward an urgent need for researchers to explore

the effective spatiotemporal visualizations and visual

analytics methods in an immersive environment.

Collaborative environment. A collaborative

analytics environment is conducive to urban visual

analysis. The investigation of urban phenomenons

may involve multiple fields, and thus the collaboration

among the experts in these fields is generally necessary.

For example, air pollution can be caused by local

traffic congestion or the air pollutants propagated

from remote regions. In such a case, transportation

experts and environmental experts need to cooperate

in analyzing the problem. How to apply existing

collaborative analysis methods [65, 142] to urban visual

analytics and what challenges will be encountered

during the application remain open problems.

Mobile environment. Nowadays, mobile devices,

such as mobile phones and tablets, has become the

most accessible analytics terminals. For example, a

police officer could regulate traffic at a crossroad with

a tablet, which empowers him/her to perform traffic

analysis and take actions in real time, instead of

relying on a remote command center. Unfortunately,

no urban visual analytics method has been developed

for the mobile environment. One potential reason could

be the limited computing capability and screen size

available for complex data visualization. Although

researchers have made some preliminary attempts in

mobile information visualization [16, 17, 174, 175], how

to design and develop urban visual analytics systems

on mobile devices needs further investigation.

8 Conclusion

Urban visual analytics has been an effective

way towards smart cities. Developing an urban

visual analytics system demands the domain problem

characterization and combination of visualizations and

computation. This paper reviews the research progress

in urban visual analytics from four perspectives of

domain problem, visualization, computational analysis,

and system. Visualization and urban analysis

practitioners can fully understand the state-of-the-art

urban visual analytics, the development guidance of

visualization systems, and future research directions

and opportunities. We published an interactive tool for

exploring the surveyed papers based on our proposed

typologies: https://urban-va-survey.github.io/.
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and L. M. Ni. BoundarySeer: Visual analysis of 2d

boundary changes. In Proceedings of IEEE VAST,

pages 143–152, 2014.
[180] Y. Wu, N. Cao, D. Gotz, Y. Tan, and D. A. Keim. A

survey on visual analytics of social media data. IEEE

Transactions on Multimedia, 18(11):2135–2148, 2016.
[181] Y. Wu, Z. Chen, G. Sun, X. Xie, N. Cao, S. Liu,

and W. Cui. StreamExplorer: A multi-stage

system for visually exploring events in social streams.

IEEE Transactions on Visualization and Computer

Graphics, 24(10):2758–2772, 2018.
[182] Y. Wu, J. Lan, X. Shu, C. Ji, K. Zhao, J. Wang, and

H. Zhang. ittvis: Interactive visualization of table

tennis data. IEEE Transactions on Visualization and

Computer Graphics, 24(1):709–718, 2018.
[183] Y. Wu, S. Liu, K. Yan, M. Liu, and F. Wu.

OpinionFlow: Visual analysis of opinion diffusion on

social media. IEEE Transactions on Visualization and

Computer Graphics, 20(12):1763–1772, 2014.
[184] Y. Wu, D. Weng, Z. Deng, J. Bao, M. Xu, Z. Wang,

Y. Zheng, Z. Ding, and W. Chen. Towards better

detection and analysis of massive spatiotemporal

co-occurrence patterns. IEEE Transactions on

Intelligent Transportation Systems, 22(6):3387–3402,

2021.
[185] Y. Wu, X. Xie, J. Wang, D. Deng, H. Liang,

H. Zhang, S. Cheng, and W. Chen. ForVizor:

Visualizing spatio-temporal team formations in

soccer. IEEE Transactions on Visualization and

Computer Graphics, 25(1):65–75, 2019.
[186] X. Xie, J. Wang, H. Liang, D. Deng, S. Cheng,

H. Zhang, W. Chen, and Y. Wu. PassVizor: Toward

better understanding of the dynamics of soccer passes.

IEEE Transactions on Visualization and Computer

Graphics, 27(2):1322–1331, 2021.
[187] P. Xu, Y. Wu, E. Wei, T. Peng, S. Liu, J. J. H. Zhu,

and H. Qu. Visual analysis of topic competition on

social media. IEEE Transactions on Visualization and

Computer Graphics, 19(12):2012–2021, 2013.
[188] Y. Yang, T. Dwyer, S. Goodwin, and K. Marriott.

Many-to-many geographically-embedded flow

visualisation: An evaluation. IEEE Transactions on

Visualization and Computer Graphics, 23(1):411–420,

2017.
[189] S. Ye, Z. Chen, X. Chu, Y. Wang, S. Fu, L. Shen,

K. Zhou, and Y. Wu. ShuttleSpace: Exploring

and analyzing movement trajectory in immersive

visualization. IEEE Transactions on Visualization

and Computer Graphics, 27(2):860–869, 2021.
[190] L. Ying, T. Tangl, Y. Luo, L. Shen, X. Xie, L. Yu,

and Y. Wu. Glyphcreator: Towards example-

based automatic generation of circular glyphs.

IEEE Transactions on Visualization and Computer

Graphics, 28(1):400–410, 2022.
[191] L. Yu, W. Wu, X. Li, G. Li, W. S. Ng, S. Ng,

Z. Huang, A. Arunan, and H. M. Watt. iVizTRANS:

Interactive visual learning for home and work place

detection from massive public transportation data. In

Proceedings of IEEE VAST, pages 49–56, 2015.
[192] J. Yuan, C. Chen, W. Yang, M. Liu, J. Xia, and S. Liu.

A survey of visual analytics techniques for machine

learning. Computional Visual Media, 7(1):3–36, 2021.
[193] J. Yuan, S. Xiang, J. Xia, L. Yu, and S. Liu.

Evaluation of sampling methods for scatterplots.

IEEE Transactions on Visualization and Computer

Graphics, 27(2):1720–1730, 2021.
[194] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G. Sun.

An interactive-voting based map matching algorithm.

In Proceedings of IEEE International Conference on

Mobile Data Management, pages 43–52, 2010.
[195] G. G. Zanabria, J. Silveira, J. Poco, A. Paiva, M. B.

Nery, C. T. Silva, S. Adorno, and L. G. Nonato.

CrimAnalyzer: Understanding crime patterns in são

paulo. IEEE Transactions on Visualization and

Computer Graphics, 27(4):2313–2328, 2021.
[196] W. Zeng, C. Fu, S. M. Arisona, A. Erath, and H. Qu.

Visualizing mobility of public transportation system.

IEEE Transactions on Visualization and Computer

Graphics, 20(12):1833–1842, 2014.
[197] W. Zeng, C. Fu, S. M. Arisona, and H. Qu. Visualizing

interchange patterns in massive movement data.

Computer Graphics Forum, 32(3):271–280, 2013.
[198] W. Zeng, C. Fu, S. M. Arisona, S. Schubiger,

R. Burkhard, and K. Ma. A visual analytics design

for studying rhythm patterns from human daily

movement data. Visual Informatics, 1(2):81–91, 2017.
[199] W. Zeng, C. Fu, S. M. Arisona, S. Schubiger,

R. Burkhard, and K. Ma. Visualizing the relationship

between human mobility and points of interest. IEEE

Transactions on Intelligent Transportation Systems,

18(8):2271–2284, 2017.
[200] W. Zeng, P. C. Fu, S. M. Arisona, A. Erath, and

H. Qu. Visualizing waypoints-constrained origin-

destination patterns for massive transportation data.

Computer Graphics Forum, 35(8):95–107, 2016.
[201] W. Zeng, C. Lin, J. Lin, J. Jiang, J. Xia, C. Turkay,

32



A survey of urban visual analytics: domain problem, visualization, computation, and system 33

and W. Chen. Revisiting the modifiable areal

unit problem in deep traffic prediction with visual

analytics. IEEE Transactions on Visualization and

Computer Graphics, 27(2):839–848, 2021.
[202] W. Zeng, Q. Shen, Y. Jiang, and A. C. Telea. Route-

aware edge bundling for visualizing origin-destination

trails in urban traffic. Computer Graphics Forum,

38(3):581–593, 2019.
[203] W. Zeng and Y. Ye. VitalVizor: A visual analytics

system for studying urban vitality. IEEE Computer

Graphics and Applications, 38(5):38–53, 2018.
[204] J. Zhang, E. Yanli, J. Ma, Y. Zhao, B. Xu,

L. Sun, J. Chen, and X. Yuan. Visual analysis

of public utility service problems in a metropolis.

IEEE Transactions on Visualization and Computer

Graphics, 20(12):1843–1852, 2014.
[205] Y. Zhang and R. Maciejewski. Quantifying the visual

impact of classification boundaries in choropleth

maps. IEEE Transactions on Visualization and

Computer Graphics, 23(1):371–380, 2017.
[206] Y. Zhao, H. Jiang, Q. Chen, Y. Qin, H. Xie,

Y. Wu, S. Liu, Z. Zhou, J. Xia, and F. Zhou.

Preserving minority structures in graph sampling.

IEEE Transactions on Visualization and Computer

Graphics, 27(2):1698–1708, 2021.
[207] F. Zheng, J. Wen, X. Zhang, Y. Chen, X. Zhang,

Y. Liu, T. Xu, X. Chen, Y. Wang, W. Su, and Z. Zhou.

Visual abstraction of large-scale geographical point

data with credible spatial interpolation. Journal of

Visualization, 24(6):1303–1317, 2021.
[208] Y. Zheng, L. Capra, O. Wolfson, and H. Yang.

Urban computing: Concepts, methodologies, and

applications. ACM Transactions on Intelligent

Systems and Technology, 5(3):38:1–38:55, 2014.
[209] Y. Zheng, F. Liu, and H. Hsieh. U-Air: When urban

air quality inference meets big data. In Proceedings of

ACM SIGKDD, pages 1436–1444, 2013.
[210] Y. Zheng, W. Wu, Y. Chen, H. Qu, and L. M. Ni.

Visual analytics in urban computing: An overview.

IEEE Transactions on Big Data, 2(3):276–296, 2016.
[211] Y. Zheng, W. Wu, H. Qu, C. Ma, and L. M. Ni.

Visual analysis of bi-directional movement behavior.

In Proceedings of IEEE International Conference on

Big Data, pages 581–590, 2015.
[212] Y. Zheng, W. Wu, H. Zeng, N. Cao, H. Qu, M. Yuan,

J. Zeng, and L. M. Ni. TelcoFlow: Visual exploration

of collective behaviors based on telco data. In

Proceedings of IEEE International Conference on Big

Data, pages 843–852, 2016.
[213] Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang,

and T. Li. Forecasting fine-grained air quality based

on big data. In Proceedings of ACM SIGKDD, pages

2267–2276, 2015.
[214] Z. Zhou, L. Meng, C. Tang, Y. Zhao, Z. Guo,

M. Hu, and W. Chen. Visual abstraction of large

scale geospatial origin-destination movement data.

IEEE Transactions on Visualization and Computer

Graphics, 25(1):43–53, 2019.
[215] Z. Zhou, C. Shi, X. Shen, L. Cai, H. Wang, Y. Liu,

Y. Zhao, and W. Chen. Context-aware sampling

of large networks via graph representation learning.

IEEE Transactions on Visualization and Computer

Graphics, 27(2):1709–1719, 2021.
[216] Z. Zhou, X. Zhang, Z. Yang, Y. Chen, Y. Liu, J. Wen,

B. Chen, Y. Zhao, and W. Chen. Visual abstraction of

geographical point data with spatial autocorrelations.

In Proceedings of IEEE VAST, pages 60–71, 2020.
[217] H. Zhu, M. Zhu, Y. Feng, D. Cai, Y. Hu, S. Wu,

X. Wu, and W. Chen. Visualizing large-scale high-

dimensional data via hierarchical embedding of knn

graphs. Visual Informatics, 5(2):51–59, 2021.
[218] M. Zhu, W. Chen, J. Xia, Y. Ma, Y. Zhang,

Y. Luo, Z. Huang, and L. Liu. Location2vec: A

situation-aware representation for visual exploration

of urban locations. IEEE Transactions on Intelligent

Transportation Systems, 20(10):3981–3990, 2019.

Zikun Deng received his B.S. degree

in Transportation Engineering from Sun

Yat-Sen University in 2018. He is

currently pursuing the doctoral degree

with the State Key Lab of CAD &

CG, Zhejiang University. His research

interests mainly include spatiotemporal

data mining, visualization, and urban

visual analytics. For more information, please visit https:

//zkdeng.org.

Dr. Di Weng is a researcher at

Microsoft Research Asia. He received

his Ph.D. degree in Computer Science

from the State Key Lab of CAD &

CG, Zhejiang University in 2021 and

his B.S. degree in Computer Science

from Taishan Honors College, Shandong

University in 2016. His research

interests mainly include the data mining, visualization,

and visual analytics of large-scale urban data. For more

information, please visit https://dweng.org.

Shuhan Liu received her B.S.degree

in Computer Science from Chu Kochen

Honors College, Zhejiang University

in 2021. She is currently pursuing

the doctoral degree with the State

Key Lab of CAD & CG, Zhejiang

University. Her research interests

mainly include spatiotemporal data

mining, visualization, and industrial data visual analytics.

https://zkdeng.org
https://zkdeng.org
https://dweng.org


34 Deng et al.

Yuan Tian is currently an

undergraduate in the State Key

Lab of CAD & CG, Zhejiang University.

Her research interests mainly include

visualization and visual analytics.

Dr. Mingliang Xu is a professor in

the School of Information Engineering

of Zhengzhou University, China,

and currently is the director of

CIISR (Center for Interdisciplinary

Information Science Research) and the

vice General Secretary of ACM SIGAI

China. He received his Ph.D. degree in

computer science and technology from the State Key Lab

of CAD & CG at Zhejiang University, Hangzhou, China.

His current research interests include computer graphics

and artificial intelligence. He has authored more than 80

journal and conference papers in these areas, including

ACM TOG, ACM TIST, IEEE TPAMI, IEEE TIP, IEEE

TCYB, IEEE TCSVT, IEEE TAC, IEEE TCIAIG, ACM

SIGGRAPH (Asia), ACM MM, IJCAI, etc.

Dr. Yingcai Wu is a Professor

at the State Key Lab of CAD &

CG, Zhejiang University. His main

research interests are in information

visualization and visual analytics, with

focuses on urban computing, sports

science, immersive visualization, and

narrative visualization. He received his

Ph.D. degree in Computer Science from the Hong Kong

University of Science and Technology. Prior to his current

position, Dr. Wu was a postdoctoral researcher in the

University of California, Davis from 2010 to 2012, a

researcher in Microsoft Research Asia from 2012 to 2015,

and a ZJU100 Young Professor at Zhejiang University from

2015 to 2020. For more information, please visit http:

//www.ycwu.org.

34

http://www.ycwu.org
http://www.ycwu.org

	Introduction
	Domain problem
	Traffic
	Environment
	Business
	Public security
	Architecture
	Economics
	Public service
	Public opinion

	Visualization
	Spatial visualization
	Temporal visualization
	Visualization of other properties

	Computational analysis method
	Learning-based
	Statistical
	Rule-based
	Simulation-based
	Mathematical programming
	Index and query

	System
	Visual analytics without models
	Post-model visual analytics
	Model-integrated visual analytics
	Visual analytics-assisted models

	Challenges of designing urban visual analytics
	Problem characterization
	High-dimensionality and heterogeneity
	Scalability
	Uncertainty

	Future directions and opportunities
	Domain problem
	Visualizations
	Computational methods
	System
	Analytics environments

	Conclusion
	Declarations

