
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Linking Text and Visualizations via Contextual
Knowledge Graph

Xiwen Cai, Di Weng, Taotao Fu, Siwei Fu, Yongheng Wang, and Yingcai Wu, Senior Member, IEEE

Abstract—The integration of visualizations and text is commonly found in data news, analytical reports, and interactive documents. For
example, financial articles are presented along with interactive charts to show the changes in stock prices on Yahoo Finance.
Visualizations enhance the perception of facts in the text while the text reveals insights of visual representation. However, effectively
combining text and visualizations is challenging and tedious, which usually involves advanced programming skills. This paper proposes a
semi-automatic pipeline that builds links between text and visualization. To resolve the relationship between text and visualizations, we
present a method which structures a visualization and the underlying data as a contextual knowledge graph, based on which key phrases
in the text are extracted, grouped, and mapped with visual elements. To support flexible customization of text-visualization links, our
pipeline incorporates user knowledge to revise the links in a mixed-initiative manner. To demonstrate the usefulness and the versatility of
our method, we replicate prior studies or cases in crafting interactive word-sized visualizations, annotating visualizations, and creating
text-chart interactions based on a prototype system. We carry out two preliminary model tests and a user study and the results and user
feedbacks suggest our method is effective.

Index Terms—Natural Language Understanding, Text Visualization Linking, Knowledge Graphs

✦

1 INTRODUCTION

IN the past decades, data visualization has been extensively
applied in data news, online reports, and interactive documents

to illustrate data facts. In these applications, insight communication
benefits from the integration of text and visualizations. On the
one hand, graphical charts convey data more intuitively, thereby
enhancing the arguments in the articles visually [1]. On the other
hand, text descriptions (e.g., captions and annotations) provide
explanations and reveal insights for visualizations, which facilitates
data interpretation [2]. However, in many cases, text and visualiza-
tions are presented together but not effectively integrated. There
may be numerous pieces of text referring to a visualization and
many visual elements in the visualization, while the relationships
between them are not obvious. To gain insights, readers need to
pay effort for finding the association between text references and
the corresponding visual elements.

To facilitate text-visualization integration, the VIS community
have paid considerable attention to linking text and visualizations.
Here we define linking text and visualizations as associating
textual references and the corresponding visual representations
via intuitive visual cues or interactions. Effectively linking text and
visualizations helps to improve the reading experience for general
readers in different scenarios. Typical examples include:
Word-sized Visualization. Embedding visualizations at the word
scale into text could avoid splitting attention between text and
visualizations, thus reducing cognitive load [3].

• Xiwen Cai, Taotao Fu, and Yingcai Wu are with the State Key Lab of
CAD&CG, Zhejiang University, Hangzhou, China. E-mail: {xwcai, taotaofu,
ycwu}@zju.edu.cn.

• Di Weng is with School of Software Technology, Zhejiang University,
Hangzhou, China. E-mail: dweng@zju.edu.cn. Di Weng is the corresponding
author.

• Siwei Fu is with School of Management, Zhejiang University, Hangzhou,
China. E-mail: siwei.fu@zju.edu.cn

• Yongheng Wang is with Zhejiang Lab, Hangzhou, China. E-mail:
wangyh@zhejianglab.com.

Visualization Annotation. Well-annotated visualizations guide
readers’ attention and facilitate the interpretation of key points in
charts [4] (see Figure 2 I 2 and II 1 versus IV 3 for a comparison
between separated text and chart versus an annotated chart).
Text-Visualization Interaction. When readers interact with text
(e.g., select a sentence), highlighting the visual elements mentioned
in charts helps readers understand the relationship between text
and charts [1], thereby improving the reading experience.

Readers would benefit from linking text and visualizations.
However, for the authors such as data analysts and data journalists,
manually crafting text-visualization links (TVLs) may involve
customizing visualizations, changing the visual style of the text,
specifying text-visualization interaction, etc. It usually requires
advanced skills and could be tedious. To facilitate the process of
linking text and visualizations, automatic models have been used
for coupling text with visualizations or tables [1], [5], [6], [7]
and annotating visualizations [8], [9], [10], [11]. Though existing
methods can be adopted for crafting TVLs, most of them are
specific to certain systems or usage scenarios and can hardly
be generalized to different applications. Furthermore, when the
automatic models produce errors, users have to revert to manual
methods, which increases the workload and reduces efficiency.
There is a lack of a mechanism that allows users to fully leverage
the models’ capabilities through human intervention.

In this paper, we present a semi-automatic pipeline consisting
of four stages to allow users to iteratively specify TVLs. The input
includes the dataset to be visualized, visualization specification,
and text (descriptions, explanations, or questions that contain
references to the visualization). Initially, users specify a chart
and our model convert the chart to a KG (Stage I). Then, users
provide the text, and our model extracts key phrases (data attributes
and visual property values) from the text (Stage II) and then group
the key phrases and map them to entities in the KG (Stage III),
thereby connecting them to the visual elements. Default styles
would be applied to the detected phrases (Stage IV), and users can



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

check the results of the model through interaction (e.g., brushing
the interest text to see whether the referred visual elements are
correctly highlighted). When errors are detected, users can revise
the detected phrases (Stage II) or regroup the phrases (Stage III).
After ensuring the correctness, users can revise the styles of the
text and visual elements or specify their integration (Stage IV). The
output of our pipeline can be an article with embedded word-sized
visualization, an annotated visualization, or an interactive article
with text visualization interactions. Presently, we support 6 basic
chart types (bar chart, line chart, scatterplot, bubble chart, donut
chart, and pie chart).

In our approach, KGs serve as both the medium and the context
for crafting TVLs. We reformulate the task of associating text and
visualizations as the task of associating text and KGs, and there
are several benefits. First, by representing visualizations as KGs,
our method becomes independent of specific visualization systems
or grammars. This allows for wider applicability in associating
text with visualizations. Second, KGs can provide contextual
information to help identify relevant entities and relationships
mentioned in the text. This aids in detecting references from
text automatically. Third, by binding phrases to KG entities and
transforming phrase relationships into KG patterns, we can easily
retrieve the associated visual elements. This practice streamlines
the process of mapping text references to the corresponding
visual elements. Fourth, the phrase-entity bindings and phrase
relationships can be manipulated by users, enabling human-model
collaboration. Users are allowed to revise the intermediate results
of different stages and the model would update its behaviors.

We demonstrate the effectiveness of our method by replicating
the cases of annotating visualizations [11], crafting interactive word-
sized visualizations [12], and creating text-visualization interactions
[13]. To evaluate the performance of our automatic model, we
conducted two preliminary tests. First, we compare the performance
of our model with Kori’s model [7]. The results indicate that our
model outperforms Kori’s model in terms of reference detection.
Second, we test the performance of our model based on the dataset
provided by Kim et al. [14], which includes human-generated
questions and explanations that contain references to charts. Our
model achieved an overall accuracy of 69.0%, with 62.8% for the
questions and 76.3% for the explanations. To evaluate the usability
of our pipeline, we conducted a task-based user study based on
our prototype system. Users used the system to craft TVLs and
provided positive feedback on our method.

The major contributions of this work are as follows:
• A semi-automatic pipeline, which enables users to craft TVLs

through collaborating with an automatic model.
• A system prototype and three usage scenarios that demonstrate

the usefulness and the versatility of the developed method.

2 RELATED WORK

2.1 Intelligently Linking Text and Visualizations
Researchers have explored methods for linking text and visualiza-
tions for improving document reading experience (e.g., [1], [6],
[15]), reducing attention splitting (e.g., [3]), facilitating storytelling
(e.g., [11]), etc. In our work, we focus on methods that use
automatic models for resolving the relationship between text and
visualizations. Additionally, in some visualization systems with
text generation features (e.g., [16]), the linking between system-
generated text and visualization can be pre-applied. These methods
are less relevant to us as they generate text rather than process it.

Text and visualizations can be linked in different manners.
Goffin et al. [17] characterize two modes of combining text with
word-sized visualizations: document-centric (text is the reading
focus) and visualization-centric (visualizations are the reading
focus). Inspired by them, we categorize existing work into three
categories: text-centric, visualization-centric, and non-centric.

Text-Centric TVL: text is in the central role, and visualizations are
incorporated into the text space (e.g., as word-sized visualizations)
or adapted to the text (e.g., as overlaying tooltips when hovering
the text) to provide additive context. Typical text-centric methods
for linking text with visualizations are word-sized visualizations.
Researchers have explored methods [12], [18] for authoring docu-
ments containing interactive word-scale visualizations. However,
these methods entail labeling text with HTML tags, while it is
unclear whether these tags can be created intelligently. Additionally,
there is research on linking text to visualizations automatically
generated for adaptive document reading. Elastic Documents [6]
automatically couples text to tables, generates visualizations, and
links text to visualizations. Metoyer et al. [19] present a method
for crafting TVLs by automatically extracting information from the
text and combining it with data to generate visualizations.

Visualization-Centric TVL: visualizations are in the central
role and text is embedded into visualization space (e.g., as
annotations overlaying on visualizations) or adaptive to visual-
izations (e.g., as captions alongside visualizations) for explaining
visualizations or guiding attention. Annotating visualizations is
a typical visualization-centric method for linking visualizations
with text. Contextifier [8] automatically products annotated stock
visualizations according to news articles. Its successor, NewsViews
[9], generates annotated maps in a similar manner based on text
mining. While these two systems focus on additive annotations
(annotations from external data sources which provide context
beyond the visualizations), Temporal Summary Images [10]
supports both observational annotations (annotations that describe
the visualizations) and additive ones for multi-variate temporal
visualizations. More recently, Lai et al. [11] present a method for
annotating visualization images, which is based on object detection
and NLP models.

Non-Centric TVL: it is unclear whether text or visualizations is
in the centric role, and they are combined by applying visual cues
(e.g., highlighting the mentions and the corresponding elements
with the same background color) but without the embedding or
adaption above-mentioned. Kong et al. [1] propose a crowdsourcing
pipeline for extracting references between text and visualizations.
These references were highlighted to help readers better understand
the relation between text and visualizations. Kim et al. [5] present
a pipeline for linking text and tables via automatically extracting
and highlighting the references between them. Kori [7] is a mixed-
initiative interface which uses an automatic model to suggest
references and allows users to manually create TVLs.

The existing methods are specific to certain visualization
systems or scenarios. It is unclear how they can be generalized to
different applications. Moreover, most of these methods barely sup-
port the scenarios where users interact with the text consecutively
and flexibly, such as document editing. To our knowledge, only
Kori [7] supports flexible TVL authoring, which is most related to
us. Kori proposes an interactive interface for creating interactions
between text and charts while we propose a semi-automatic pipeline
that can be applied to different scenarios and applications. Though
Kori provides automatic suggestions of TVLs and allows users to



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Fig. 1. A simplified knowledge graph (bottom right) for representing the
grouped bar chart (top) and its underlying data (bottom left). The left part
of the knowledge graph describes the data while the right part represents
the bars in the visualization. Blue nodes present entities and white nodes
represent literals. For simplicity, more specific details are left out.

manually specify TVLs, it lacks a mechanism to allow users to
collaborate with its model. When Kori’s model produces errors,
users can only resort to a manual method, which increases the
workload and reduces efficiency. With our method, users can revise
the intermediate results produced by the model at different stages,
thereby better utilizing the model and enhancing efficiency.

2.2 Data Visualization with Knowledge Graphs

KGs are widely adopted in applications such as search engines,
recommendation systems, and dialogue systems. By leveraging
ontologies as schema layers, KGs support logical inference for
reasoning over data. In the visualization domain, considerable
attention is paid to visualizing ontologies and KGs. While the
majority of them focus on browsing and exploring ontologies and
KGs in a hierarchical layout or graph format, several works [20],
[21], [22], [23], [24], [25] have explored methods for extracting
data from KGs, applying data transformations, and visualizing the
processed data. Except for visual analytics on KG data, the VIS
community rarely explore adopting KGs and related techniques to
support visualization applications. To the best of our knowledge,
only CAVA [26] uses KGs for data augmentation of tabular data to
facilitate exploratory analysis and KG4VIS [27] leverages a KG
embedding technique for visualization recommendation. Our work
is another attempt at employing KGs for solving visualization-
related tasks. In our work, KGs serve as the context and medium
for facilitating of the creation of TVLs.

3 KNOWLEDGE GRAPH USAGE

Recent visualization research with KGs (e.g., [23], [26]) has
provided a rich introduction to the basic knowledge of KGs. To
avoid redundancy, we omit the basic introduction of KGs and start
by explaining a simplified KG for representing a grouped bar chart
borrowed from Lai et al. [11]. Then, we provide an exemplary use
case to help readers comprehend how it works.

The KG shown in Figure 1 is used to depict the bars in
the visualization (V1) and their underlying dataset (DS1). In the
KG, two nodes (subject and object) linked by a direct edge with

semantical meaning (predicate) in the KG indicate a (subject,
predicate, object) relationship. In our work, we use KGs mainly
for depicting entity-attribute-value relationships. We exemplify
several triplets related to the visual element VE1 and its data object
DO1 as follows:

(DO1, year, 2013): 2013 is the value of the year attribute of DO1.

(VE1, bound, DO1): DO1 is bound to VE1.
(VE1, color, blue): blue is the value of the color property of VE1.

These triplets can be stored in a Resource Description Frame-
work (RDF) database. In KGs, literals are distinguished from
entities. Literals are values of general data types (e.g., number and
string) while entities are objects with properties and relations. A
formal instance of triplets stored in RDF form is like (ltv-ctx:VE1,
ltv-owl:bound, ltv-ctx:DO1). For simplicity, prefixes are omitted
and we use bold font to represent entities.

A simple use case is to find those VEs which represent “the
sale of X Company in 2013”. After detecting X Company and
2013 and identifying the corresponding attributes (name and year),
we can make a SPARQL (an RDF query language) query like:

SELECT ?ve WHERE{
?do name X_Company.
?do year 2013.
?ve bound ?do.}

In this query, our purpose is to find those visual elements, so it
begins with “SELECT ?ve” (In SPARQL, variables are prefixed by
“?” ). Then, each sentence in the braces stands for a triplet pattern
to be found in the RDF database. First, we find those data objects
(?do) that have values of X Company and 2013 via the first two
sentences. Then, we obtain the bound visual elements (?ve). Same
with Cashman et al. [26], we also believe KGs simplify the way to
“think about the relationship of data objects”.

4 OVERVIEW

In this section, we first introduce the common tasks in linking
text and visualizations. Then, we present our four-stage pipeline
for supporting these tasks. We implement a prototype system
and incorporate a usage scenario to illustrate our pipeline and
demonstrate the effectiveness of our method.

4.1 Task Analysis
In order to design an intelligent method for linking text and
visualizations, we summarized the tasks in this process according
to the existing research works (as mentioned in subsection 2.1).
We identified four common tasks, which can be automatically
completed by an automatic model, manually by users, or in a
mixed-initiative manner through human-model collaboration.
T1 Visualization Specification and Abstraction. In many sce-

narios, visualizations are not assumed to be preexisting, and
specifying visualization is a necessary step. Especially in some
text-centric applications (e.g., [6]), visualizations need to be
created according to the content of the text. In addition, it
involves abstracting them into operational data objects via
extracting the data and visual encoding.

T2 Information Extraction from Text. To resolve the relationship
between text and visualizations, it generally requires extracting
key information from the text. The key information includes:
entities (e.g., Google), numerals (e.g., 30), and dates (e.g.,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 2. An illustration of our four-stage pipeline for linking text and visualizations. Green boxes and purple boxes indicate the input and output
respectively. Blue boxes and arrows represent the results and the tasks done automatically while orange ones represent those done by users. After
a user uploads the data and specifies the visualization (I 1), our model renders the visualization (I 2) and generates the knowledge graph (I 3).
Then, the user inputs the text (II 1), our model detects the mentions of visual elements through extracting the key information and making attribute
inferences (II 2). The user can revise the results of information extraction and attribute inference via interactions (II 3 and II 4). In this case, the user
does not change the result since the mention (M1) is correctly detected. Then, the mentions are grouped into references (III 1) and then mapped to
the entities in the KG (III 2). In this example, since the mentions are wrongly grouped, the user regroup the mentions (III 3) to get the desired result
(III 4). Finally, default styles are applied to the chart (IV 1) and the text (IV 2), and the user could reformat the styles and specify the text-visualization
integration (IV 3).

2021) that can be mapped to the attributes and values in a
dataset; visual descriptions (e.g., red bar) that can be mapped
to the visual features in visualizations; particular expressions
that require further parsing (e.g., the largest country).

T3 Mapping between Text and Visual Elements. The key
task for text-visualization linking is mapping text references
with visual representations. In this process, it may require
combining the key information to form integrated references
according to the context of the visualization. For example, in
“the sales of X Company in 2013”, the key phrases (sales, X
Company, 2013) should be combined into one reference.

T4 Visually Linking Text and Visualizations. Text and visualiza-
tions are visually integrated to improve the reading experience
and facilitate storytelling. The visual linking can be established
by creating spatial proximity (e.g., embedding word-sized
visualization alongside the text and adding text annotations
to the visual elements), visual similarity (e.g., text mentions
and the corresponding visual elements are highlighted with the
same background color), interaction, etc.

4.2 Pipeline and Prototype System

We propose a four-stage pipeline (Figure 2) to support the above-
mentioned tasks for intelligently linking text and visualizations.
Each stage corresponds to one task and is divided into two subtasks.
Each of the subtasks can be solved by users, completed by
the automatic model, or dominated by users while the model
provides default solutions. Our method follows “agency plus
automation”, the design rationale proposed by Heer [28] which
encourages integrating human agency with machine automation in
an interactive system.

To better illustrate our pipeline as well as to demonstrate the
effectiveness of the proposed method, we developed a prototype
system and the interface is shown in Figure 3. For the sake of
simplicity in illustration, we use mention to represent a key phrase
(e.g., X Company) which describes an attribute value of the visual
elements and reference to represent a group of conjunct mentions
(e.g., the sales of X Company in 2013) that refer to the same
visual element(s). After a user specifies a visualization (Figure 3 I),



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 3. The interface of our prototype system. The left panel (I) is used for specifying visualization showing the underlying data. In the right part, users
type in the text and parse it (II 1 and 2). Then, they can check and edit the result of automatic linking. Users can brush a sentence (II 3) to see the
result or right click a detected key phrase to check and set its alias (II 4). Moreover, users could regroup the key phrases via interaction on the tag box
(III). They can further edit the visual linking through manipulations of the menu bars (IV).

the model represents the visual elements with the underlying data
as a KG (T1) in Stage I. Then, the user types in text and triggers
parsing (Figure 3 II 1 and 2), and the model extracts mentions from
the text (T2), and infers the attribute type (e.g., name and year) of
each mention in Stage II. After that, the model first combines the
mentions into references and then maps the references to the KG
entities which represents the visual elements (T3) in Stage III. The
user can interact with the text to check the referred visual elements
(Figure 3 II 3), and reset a mention (Figure 3 II 4) or regroup several
mentions (Figure 3 III). After the previous stages, the relations of
the text and the referred visual elements are semantically resolved
but are not visually established. Default visual styles are applied to
both text and visual elements, and users can further specify their
styles and integrations via manipulation (Figure 3 IV) in Stage IV.

In the following subsections, we incorporate a concrete usage
scenario borrowed from Lai et al. [11] to introduce the each stage of
our pipeline. Bob, a market analyst, uses our system for crafting an
annotated bar chart to illustrate his findings. To avoid verbosity, we
have relegated some technical details such as predefined keywords
to the supplementary materials.

4.2.1 Stage I: Context Preparation
In this stage, a visualization is specified (Subtask 1) and the system
would transform the visual elements together with their underlying
data into a KG stored in an RDF database (Subtask 2). We limit

the data fields that users can match on different visual channels
(e.g., only numeric data can be mapped to size channel) to avoid
mismatches between data and visualizations.
Subtask 1: Generating Visualization. The first step of our pipeline
is to generate a visualization. In our pipeline, it is assumed that data
and visualization specifications are available, and visual encoding
can be extracted from the specifications. Currently, user are required
to manually specify visualizations. We discuss the techniques
for facilitating visualization specification in the second limitation
(Support for Visualization Specification) in subsection 7.1.
Subtask2: Generating KG. After a visualization is specified, our
model generates a contextual KG to describe the data as well as
the visual elements. We extend the method of Antonion et. al
[29] in generating KG from tables, as it does not cover how to
represent visual elements. In some scenarios, users may specify
data transformations in a specification. For example, users may
declare mapping the sum of sales to y channel when using Vega-lite
or Tableau. Our backend module would bind visual elements to
data objects in the transformed dataset. We assign a unique ID to
each of the visual elements, by which the model could access the
visual elements. An exemplar KG for representing visual elements
is shown in Figure 4. Blue nodes represent entities and white
nodes represent literals Since data objects and visual elements
are in a one-to-one relationship, data objects (marked with a red
dashed oval) are integrated into visual elements and omitted in the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 4. A subgraph of our KG used to depict a data object and the
corresponding visual element. Green nodes represent entities and white
nodes represent literals. For convenience, we assign the attributes of the
data object to the visual element. The original data objects are omitted in
the consequent processes.

consequent process.
Use Case. In order to craft an annotated bar chart, Bob needs to
generate a bar chart first. He chooses a CSV file which contains
three fields (name, year, and sales) and 15 rows. It describes
the sales of three Companies (X Company, Y Company, and Z
Company in the name field) from 2013 to 2017 (in year field).
After uploading the file, he specifies a bar chart by mapping year
to the x channel, sales to the y channel, and name to the color
(Figure 3 I). Then, he presses the “render” button to generate the
visualization and the system would soon get prepared.

4.2.2 Stage II: Mention Detection
In this stage, our model first extracts mentions from the text
(Subtask 1). Then, to generate RDF queries in an entity-attribute-
value form in the next stage, it infers the corresponding attributes
(data attributes and visual properties) of the mentions of values
(Subtask 2). For example, our model first extracts “2013” from the
text and then infers that it is a value of year. However, there may
exist ambiguity issues discussed in the previous works [30], [31].
In our pipeline, similar to the previous researches on NLIs (e.g.,
[30], [31]), users can interactively revise the result.
Subtask 1: Extracting Information. The initial process of our
method for mention detection is extracting key phrases from text
(T2). We use Stanford’s CoreNLP [32] for obtaining the lemmas,
POS tagging, NERs of the words, and the dependency parsing
result of the sentence. We extract three types of mentions: direct
mention, filter expression, and data operation. Direct mentions
are the keywords that can be mapped to the aliases or the values
of the entity in the KG. Based on the lemmas of the words and
the aliases of the entities, we map the words to the entities. To
find those n-gram phrases as well as to reduce ambiguity, we
combine the sequential words into an integrated mention that can
be mapped to the same entity. Besides, we extract cardinal numbers
via POS tag (“CD”) and date via NER (“DATE”), and try to map
them to the literals and entities in the KG (e.g., 450m and 2013).
Filter expressions are the numeric ranges (e.g., “between 200m
to 250m” and “after 2015”), which are identified according to
the combination of predefined keywords with cardinal numbers
and dates. Data operations are extracted according to predefined
keywords (e.g., “largest”) and mapped to data operations (e.g.,
MAX). In terms of data operation, we only support maximum and
minimum, which are transformed to argmax and argmin operations.
We do not include sum and average since they make no difference to
the referenced entities. We do not support composite data operations
(e.g., “the largest sum”), which is left to future work.

Fig. 5. The interactions for revising the errors, which include resetting
mentions (A), resetting attributes (B), and regrouping mentions (C).

Subtask 2: Inferencing Attributes. After detecting the mentions,
we transform them into an “attribute: value” form (e.g., “name: X
Company” and “year: 2013”) for querying the visual elements.
Among the mentions, we distinguish attribute mentions (direct
mentions of attributes) from value mentions (direct mentions of
values, filter expressions, and data operations). For value mentions,
we would infer their attributes to accomplish the transformation.
The criteria for attribute inference is that the data type of the
attribute should be consistent with the value mention. In some
cases, we can find a proper attribute mention for a value mention
in the context. For example, in “The sales is the largest”, sales
can be the attribute of MAX (largest). In other cases, we need to
make inferences since the valid attribute of a value mention is not
in the context. Finding the attribute of a direct mention of value is
straightforward since this can be done by retrieving the triplets in
KGs. If a direct mention is linked by different attribute links in the
KG, we would assign it with the most frequent attribute. To exactly
determine the attribute of a filter expression or a data operation
is somehow challenging when there exist different attributes that
match the criteria. Therefore, we used heuristic methods to generate
default results. For an filter expression, we would consider the
ranges of the data attributes to find one that has the largest overlap
with the FE. For an data operation, we try to assign a data attribute
according to the priority of visual channels (size > y > x). The
priority rule is also applied for an filter expression when two or
more data attributes have the same overlap with it.

Use Case. After the visualization is generated, Bob types in the
text and presses the “parse” button. Through exploring the text,
Bob finds that while many key phrases are correctly detected, there
exist some mistakes in the process of mention detection (Stage II).
In “Even in the worst year, the sales of X Company still remained
above 300 million”, the model failed to recognize “the worst year”
as 2015 given the context of “the sales of X Company ”. Bob
brushes this phrase and right clicks it (Figure 5 A1), and then sets
it aligned to 2015 via typing in “2015” and choosing the item in the
drop-down list (Figure 5 A2). Besides, he also checks whether the
model properly processed “after 2015”. He right clicks “after 2015”
and finds it is recognized as “year: > 2015” (Figure 5 B1). If the
model wrongly inferred the attribute, he can change the attribute
via choosing the right one (Figure 5 B2).



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 6. An example of mention grouping. We begin with the result of
dependency parsing (A). The non-detected words (in grey) are omitted
and the original tree is converted into a tree representing the dependency
relations of the mentions (B). Then, the mentions are transformed
into reference nodes (green node) which contains “attribute: value”
relationships (C). The reference nodes are grouped in a bottom-up
manner via post-order traversal (D-E). Finally, we omit the non-specified
mentions (M2 and M5 in E) and reindexed the references.

4.2.3 Stage III: Reference Mapping

In this stage, we construct the relationship between the text and the
referred visual elements (T3) via first grouping the mentions into
references (Subtask 1) and then mapping the references to the visual
elements (Subtask 2). Each of the references is an RDF query like
the example provided in section 3, which can be used to find the
visual elements. In many cases, it can be a challenging task (called
linearization) to detect coherent phrases among the conjuncts [33].
To address this challenge, we adopt a heuristic method inspired
by Evizon [33] for automatically grouping the mentions. Users
can regroup the mentions via interaction to revise the result of
the automatic model. After mention grouping, the referred visual
elements of each reference are found through KG queries. Note
that users can select any segment of the text and mention grouping
only defines how the selected mentions are combined.
Subtask 1: Grouping Mentions. In order to group the conjunct
mentions, our model converts each of the sentences into a tree
manner based on the result of dependency parsing (Figure 6 A)
after extracting the mentions. In this process, unlike most of the
existing works (e.g., [11], [30], [34]), the relation types of the
dependencies are omitted. This is because we believe a keyword in
a dataset can be any POS in a sentence and have any dependency
relations with the other words. We combine the words in detected
chunks and link each of them to the lowest common ancestor
of the words in it (Figure 6 B). We begin with regarding each
of the mentions as a reference (Figure 6 C). Then, our model

TABLE 1
Types of mention conflicts.

Mention Type Conflict Type Example

Direct Mention same attribute “name:X Company”
& Direct Mention & “name: Y Company”

Direct Mention same attribute no overlap “year: 2013”
& Filter Expression & “year: > 2015”

Filter Expression same attribute no overlap “sales: < 200m”
& Filter Expression & “sales: > 250m”

Data Operation same attribute “sales: MIN”
& Data Operation & “sales: MAX”

tries to group mentions in a bottom-up manner via post-order
traversal inspired by Evizon [33]. The post-order traversal ensures
that the mentions in the same dependency brunch are combined
first (Figure 6 D). Two references can be combined if they do not
contain the same mention and there is no mention conflict after they
are combined. The types of mention conflict are listed in Table 1.
After combining the references, we omit M2 and M5, whose values
are not specified, and the result is Figure 6 E. Note that in this
process, R1 and R4 are reindexed as R0 and R1 respectively to
avoid confusion to the users.
Subtask 2: Mapping Entities. After elementary mentions are
grouped into references, our model maps them to the KG entities
which represent visual elements. In Figure 6 E, each reference node
consists of two triplet patterns, which can be seen as a reference to
the visual elements. For example, R1 consists of (?, year, 2013) and
(?, name, X Company), which refers to VE1. The references can be
transformed into KG queries as illustrated in section 3. Our method
supports the queries consisting of there types of patterns, each
of which is corresponding to a relational query pattern: direction
mention is corresponding to lookup (e.g., find the visual elements
whose year is 2013), filter expression is corresponding to filter
(e.g., find the visual elements whose sales are larger than 200m),
and data operation is corresponding to aggregate (e.g., find the
visual elements whose sales is the largest).
Use Case. Bob brushes a sentence (“In 2013, the sales of X
Company reached 450m, which were 3 times as much as the sales
of Y Company.”) and finds there is something wrong in reference
mapping (Stage III). Only the bar which represents the sales of
X Company in 2013 (VE1 in Figure 2 A2) is selected, while he
expects to see both this bar and the one which represents the sales
of Y Company in 2013 (VE2 in Figure 2 A2) to be selected. After
checking the mention groups, he notices that the mentions are
wrongly grouped: 2013 is only in the first group but not in the
second group; 450m, which should be in the first group, is assigned
to the second group (Figure 5 C1). Thus, he makes 2013 in both
groups and changes the group index of 450m from 1 to 0 (Figure 5
C1-C2). After that, he sees the correct visual elements are selected
when he brushes the sentence.

4.2.4 Stage IV: Visual Linking
The last stage of our pipeline is visually linking text references and
visual elements (T4). After the previous stages, the relationship
between the text and the visualization is resolved, but they are
not linked visually. Effective TVLs usually involve the change
of the styles of text and the visual representations (Subtask 1).
Then, how they are integrated to achieve TVLs should be defined
(Subtask 2). Previous researchers have proposed different methods
for the integration and interaction between text with visualization,
as mentioned in subsection 2.1. In our pipeline, different choices



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 2
Techniques for highlighting text and visual elements.

highlight text highlight visual elements adopted in our method

Font Color Fill Color Yes
Background Color Background Color Yes

Underline Stroke Yes
Font Size Size -

Font Style - -
Font Weight Stroke Width Yes

Rectangular Border Stroke -
Spaced Out Font - -

Text Shadow Shadow -
Font Family - -

Capitalization - -
Strike Through - -

Blinking Blinking -

are provided for linking text and visualizations, with a focus on
highlighting the text mentions and the referenced visual elements.
Subtask 1: Formatting Style. To establish visual linking between
text and visual elements, we first format their visual styles. By
default, extracted mentions are highlighted via dashed underline
for direct mentions and data operations and grey background color
for filter expressions. We used dashed underline to hint that the
key phrases are automatically detected and have not been verified.
When users interact with the text (e.g., brush a sentence), our
system highlights the referenced visual elements via applying
borders to them and letting other visual elements fade out. Besides,
gray brush boxes are added as the background for filter operations.
However, such results may not be desirable. Users may want to
change the highlighting method to control readers’ attention [35],
[36]. Thus, more choices should be provided for users to edit the
highlighting and the interaction mode of text and visualizations.

For facilitating the visual linking, we explored different options
for highlighting the referenced visual element. The first column in
Table 2 shows the common text highlighting methods summarized
by Strobelt et al. [37] and we try to align each of them to a method
for highlighting visual elements. Among them, font style, space
out font, font family, capitalization, and strike through are specific
to text and cannot be directly applied to visual elements. Besides,
we exclude size, shadow, and blinking for different reasons: font
and visual sizes are usually predetermined [38]; shadow may cause
blurred vision in text and is not obvious in visualizations; blinking
involves motion, which may be disturbing and cannot be used in
static scenarios. Users can specify the style of textual references and
their corresponding visual elements for facilitating the intuitiveness
of TVLs.
Subtask 2: Specifying Integration. In addition to formatting
the visual style of text and visualizations, a user could specify
the integration of text and visualizations to craft different types
of text-visualization linking. The integration can be achieved in
different ways, and we provide basic solutions which integrate
text and visualizations via interaction and spatial proximity. Users
are allowed to specify the text segment to be linked and set the
trigger mode (e.g., hover and click). Moreover, users can embed
a visualization in a word-sized style alongside the text mention
to it or add the text into the visualization as an annotation, while
highlighting the referenced visual elements. In our work, the text
to be linked and the linkage location (the segment of text can be
interacted, the placement of word-sized visualization in text, and
the position of text in visualizations) are manually specified. The
techniques for identifying the insights and the linkage location in

Fig. 7. An example for crafting annotated visualizations. After the previous
steps in text parsing, a user resets the stroke thickness of the visual
elements (A1-A3) and sets the color of the phrase (B1-B2). Finally, he
embeds the text into the chart as the annotation (C1-C3).

text to extend our pipeline are left to future work.
Use Case. After regrouping the mentions, Bob wants to embed
the sentence into the bar chart as an annotation (Stage IV). To
make the key information more explicit, he revises the styles of
the text and the visual elements. He brushes the sentence (Figure 7
A1) and sets the stroke width (Figure 7 A2) of the visual elements
(Figure 7 A3). In addition, he brushes “X Company” (Figure 7 B1)
and changes the font color to blue via the font color component
(Figure 7 B2) to highlight these two phrases. In the same way,
he changes the font color of “Y Company” to orange. After that,
he presses the “Annotation” button (Figure 7 C1) and brushes the
sentence (Figure 7 C2) again to embed the sentence into the bar
chart (Figure 7 C3).



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 8. A demo for crafting an online document with interactive word-sized
visualization. After the initial steps of visualization specification and text
parsing, we can select the keyword (A1), change the interaction type
from “select” (A2) to “filter” (B1), and embed a word-sized visualization
(B2) into the text (B3). Then, we brush the keyword “4.8 million” (C1) and
the word-sized visualization also changed (C2).

4.3 Implementation and Performance Analysis

The system is implemented as a REACT application with a Python
server. The external libraries used in our systems include: pandas
[39] for data transformation; Stanford’s CoreNLP [32] for NLP
tasks (POS tagging, stemming, NER, and dependency parsing);
RDFLib [40] for simulating RDF databases and supporting SparQL;
D3.js [41] for drawing visualizations and supporting interaction;
Ant Design [42] for developing the user interface.

We specify the number of visual elements as n and the number
of words in the text as m. The time complexity of generating KG is
O(n). The time complexity of mention detection is O(mn) because
scanning the words is O(m) and find the triplets contain a word
is O(n). The complexity of entity grouping is no more than O(m)
and that of resolving a reference is O(n). Thus, the complexity of
entity mapping is no more than O(mn) given that the number of
references is no more than m. We cannot tell the complexity of
NLP tasks solved by Stanford’s CoreNLP. In our experiments, the
time cost for NLP tasks is approximately 2 seconds per thousand
words (with 3.20 GHz 8-Core Intel Core i7 and 32 GB memory).
More analysis can be found in the supplemental materials.

5 USAGE SCENARIOS

In the previous section, we present a complete usage scenario,
in which a user (Bob) followed our four-stage pipeline to create
an annotated bar chart [11]. In this section, we present three
other usage scenarios of linking text and visualizations, which
demonstrate the effectiveness of our method.

5.1 Crafting Online Documents with Interactive Word-
Sized Visualizations
The first example is creating interactive word-sized visualizations
in online documents [12]. After the visualization is generated and
the text is parsed, Bob brushes “6 pm” (Figure 8 A1) and the
corresponding line is highlighted in the chart. To make it clearer,
he chooses “filter” (Figure 8 B1) as the interaction type, where
“select” (Figure 8 A2) is set as the default. The changes of the
chart are shown in Figure 8 B. Via pressing “WordSized” button
(Figure 8 B2), he embeds the line chart into the text as a word-
sized visualization (“6 pm ”, shown in Figure 8 B3). Then, he
brushes “4.8 million” (Figure 8 C1)) and only a point is shown
in the word-sized visualization (Figure 8 C2) since the interaction
mode is “filter”. After specifying the interaction, he could share
the crafted document with the public.

Note that in our work, the line chart is customized to support
linking. In line charts, different from bar charts and pie charts,
data objects are bound to the circles rather than the paths. For the
visualizations where data are not directly mapped to the visual
elements (e.g., line charts and area charts), our pipeline should be
further extended. We discuss this as a limitation in section 7.

5.2 Specifying Chart-Text Interactions in Interactive
Documents
The second example is specifying chart-text interactions in an
interactive document [13] which describes the relation between
Covid deaths and vaccines. After generating a line chart and parsing
the text (Figure 9 A), Bob notices that the model detected many
keywords, some of which he does not care. He chooses to focus
on those phrases (Figure 9 A1-A4) he wants to emphasize. After
brushing these phrases, he ensures that they are correctly connected
to the visual elements. Then, he applies underlines (Figure 9 A5)
to each of them and sets the trigger mode to “click” (Figure 9
A6). After that, he publishes this document. In the published
document, the other detected keywords are omitted since Bob does
not specify their linking. When readers click the phrases (Figure 9
B1-B4), the corresponding visual elements are highlighted in the
chart (Figure 9 C1-C4). Note that in this example, we assume
that Bob added meaningful grouping labels (e.g., “devastating



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Fig. 9. An example for specifying chart-text interactions in an interactive document. First, a data analyst specifies the links between the chart and four
phrases (A1-A4) via editing text style (A5) and trigger mode (A6) and publishes the document. Then, readers can interact with these phrases (B1-B4)
to see the emphasized information in the chart (C1-C4).

outbreaks”) during data preprocessing so that our model could
recognize those keywords. The behavior or adding labels helps
creating semantically meaningful legend in visualizations and can
be found in a variety of data analysis projects. However, the
grouping labels can be meaningless in some cases. In such cases,
our backend model is unable to recognize the keywords and map
them to the labels since it does not have the external knowledge (as
discussed in Capability of Natural Language Understanding in
section 7), and users need to interact with the system as described in
Section 4.2.2 (Fig. 5A) to complete the task of mention detection.

6 EVALUATION

In this section, we first present a user study to test the usability of
our method. Then, we report the accuracy of the model and discuss
the distribution of the errors and the failure conditions.

6.1 User Study

To evaluate the effectiveness of our pipeline in helping users craft
TVLs, we carried out a user study with two types of tasks: (1)
revising the errors of the model in text processing (Stage II-III), and
(2) visually linking text and visualizations (Stage IV) when there
is no error in the previous stages. Since the most related works
[6], [7], [11] are not available, we cannot employ an appropriate
baseline to conduct a comparative study. We focus more on the
difficulties our users encountered when using our prototype system
and the feedbacks provided in the post-experiment interview. The
experiments are conducted on a desktop Windows 10 machine with
a 27-inch monitor (3840×2160 resolution).

6.1.1 Participants and Experiment Design
Participants. We recruited 8 volunteers (4 males and 4 females,
aged 23-25, and all reported normal or correct-to-normal vision)
from a data visualization course. The participants were post-
graduate students in data science (4) and artificial intelligence (4).

TABLE 3
Tasks

t1 Revise the wrongly detected mention.
t2 Revise the wrongly inferred attribute.
t3 Regroup the detected mentions.
t4 Create an annotated chart.
t5 Embed a word-sized visualization into the text.

To ensure the participants are able to assess our system, we only
recruited those who had recent (in the past half year) experience in
crafting analytical reports or presentations which incorporate text
and visualizations. They all reported being skilled in using GUI
based tools (e.g., Excel) to generate charts. Each of the participants
received a 5$ gift card as a reward.
Tasks and Materials. To help the participants better assess our
system, we designed 5 tasks (Table 3) based on the key interactions
in our pipeline. Among t1-t3, participants needed to check the
output of the model and revise the errors made by our model
while the tasks involve no visual formatting and integration. The
entailed interactions are illustrated in Figure 5. t4 and t5 require
the participants to replicate the previous demos (Figure 2 IV 3 and
Figure 8 C) and there is no error in mention detection and entity
mapping. The materials for training and formal testing, including
the tables and the text, were the same with Figure 2 and Figure 8.
For creating the tasks, we manually revised the result of the text
parsing. We did not employ more charts and the failure cases from
the model experiment since through a preliminary test we found
the diversity and the complexity of charts would cause unnecessary
difficulty in comprehending the chart.
Procedure. At the beginning, we introduced the concept of linking
text and visualizations and the workflow of our system to the
participants. Then, they would get accustomed to the manipulation
of the system under our instructions. After they got prepared, they
were required to complete the tasks in Table 3. As they finished
all the tasks, we encouraged them to test our system with different



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 4
Questions

Q1 The system is easy to learn.
Q2 The system is easy to use.
Q3 The interactions are helpful in handling the errors of the automatic model.
Q4 The interactions are helpful in crafting text-visualization linking.

datasets and their own text. Then, they were asked to finish a
questionnaire (Table 4), which is a seven-point Likert scale (1 -
strongly disagree, 7 - strongly agree). Finally, we would make an
interview with each of them. The time of the entire study was about
30 minutes for each participant.

6.1.2 Result

Generally, the participants were able to complete the tasks. Given
that the difficulties of completing the tasks largely originated
from comprehending the relationship between text and charts, we
did not make a formal analysis of the completion time and the
accuracy of each task. Instead, we focused on our observations, the
questionnaire ratings, and the user feedbacks.

Overall, the users agreed (gave an average rating that approxi-
mates 6) that our system is easy to use (Q2, Mean = 6.25, SD =
0.46) and that the interactions are helpful in handling the errors of
the automatic model (Q3, Mean = 6.25, SD = 1.04) and crafting
text-visualization linking (Q4, Mean = 6, SD = 0.76). Among the
questions, the average rating on ease of learning (Q1, Mean = 5.5,
SD = 0.76) was the lowest.

6.1.3 User Feedback

Learning Cost. Overall, these interactions are not difficult to learn,
except for grouping mentions (Q1). According to our observation,
the majority (6 out of 8) of the participants paid more effort to
grasp grouping mentions compared with other interactions, which
may partly account for the comparatively low rating on Q1. The
learning cost is mainly in understanding the concept rather than in
learning the interaction. Thus, we need to explore a way to help
users understand this task more easily through an user-friendly
expression (such as “combining key phrases”).
System Intelligence. One user gave 4 points on Q3. He mentioned
that manually setting aliases of the keywords was not intelligent
and there should be an inferencing model to help him achieve this
goal. Besides, the users expressed their demands on the intelligent
functions of the system, such as style recommendation and creating
multiple links at the same time. We noticed that to meet these
requirements, our methods still have room for improvement in
terms of system intelligence.
Linking Format. The two users who gave 5 points on Q4 both
mentioned the concerns about the use of word-sized visualizations.
They mentioned that they had never seen word-sized visualizations
embedded in the text before and had questions about the effective-
ness of their usage. Word-sized visualization is not a common form
for general users, so they may have hesitation. To address this issue,
we have two considerations. On the one hand, we need to provide
more guidance for the ways of linking text and visualization that
users may not be familiar with, in order to eliminate their hesitation.
On the other hand, we can hide features that general users do not
understand, such as storing them in a secondary menu, in order to
avoid confusion caused by these features.

0 20 40 60 80 100
Percentage

Q1

Q2

Q3

Q4

Q
ue

st
io

n

5 2 1

6 2

1 3 4

2 4 2

Strongly Disagree
Disagree
Slightly Disagree
Neither Agree nor Disagree
Slightly Agree
Agree
Strongly Agree

Response

Fig. 10. The ratings on the questions.

6.2 Model Evaluation
We have conducted two preliminary tests to evaluate our automatic
model. To make a direct comparison between our work and Kori
[7], we used the Kori dataset 1 to test our method in the first
test. However, this dataset is specifically designed to evaluate the
performance of reference detection. It does not encompass aspects
of reference mapping, which differs from our target of evaluation.
In addition, the available part of this dataset mainly consists of
direct mentions (point references), with few filter expressions
(interval references) or grouped mentions included. To complement
this, we conducted the second test, where we constructed another
dataset based on the dataset presented by Kim et al. [14] to test
our model. We chose this dataset since the chart specifications
and data are available and the questions and explanations contain
references to the visual elements in the chart. Please note that, as
visualization practitioners, our primary focus is on the collaboration
between human users and automatic models rather than solely
presenting an automated method. The model evaluation aims to
provide preliminary insights into the capability of the model, rather
than demonstrating we outperform the existing models.

6.2.1 Test 1: Reference Detection
Dataset. The Kori dataset consists of two parts: text-chart pairs
selected from Kong et al.’s collection [1] and annotated by Kori’s
authors (Part 1) and those created by Kori’s authors (Part 2). While
Part 1 is completely available, Part 2 is unavailable to us for the
following reasons: 1) it does not include the corresponding data
(e.g., CSV files) for generating the charts; 2) many of the chart
specifications are not supported by us due to the chart types or
unique Vega-Lite syntax. Thus, we only used Part 1.
Results. On Part 1 of the Kori dataset, our model detects 100
correct references (out of 169 references) and generates 17 false
references, achieving an accuracy of 0.59 and a recall of 0.85. Our
F1 score (0.69) is higher than the average of Kori’s (0.43) on this
part. After reviewing Kori’s paper, we speculate that there might
be two reasons for our better outcomes: 1) Our approach provides
better support for numbers (as mentioned in Kori’s paper, their
method is based on FastText [43], which has problems in handling
numbers); and 2) Kori utilizes a vector similarity technique, which
excels at identifying synonyms but may detect semantically similar
yet irrelevant terms, thereby lowering the precision. Initially, we
also considered adopting word vector methods. However, during
practical testing, we found such approaches to yield unsatisfactory
results. Thus, we ultimately decided against using word vectors.

6.2.2 Test 2: Associating Text with Visual Elements
Dataset. The dataset presented by Kim et al. [14] contains 52 charts
along with 629 human-generated questions (and answers) and 748
human-generated explanations. Among the 52 chart specifications,

1. https://dwr.bc.edu/kori/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

16 were left out since they contain data transformation (e.g.,
string operations and conditional operators) we do not support.
We excluded the questions and explanations on these charts and
randomly sampled 100 questions and 100 explanations from the rest.
Based on the prototype system, we generated the charts according
to the specifications, took each question and each explanation as
the input, and selected the whole sentence to highlight the groups
of key phrases. We invited 2 experts (PhD candidates who have at
least one first author TVCG paper) to judge whether the referenced
entities in the text are correctly highlighted. They were asked to
be strict about the result, which means irrelevant visual elements
should not be highlighted and important information in the text
should not be missed. To avoid induction, we hid the hints of the
key phrases in the text.
Result. Among the samples, 26 cases (6 questions and 20
explanations) were excluded as the experts thought that these
cases contain no valid reference to the charts. Our model correctly
highlighted 69.0% (120 out of 174) sentences, with 62.8% (59
out of 94) accuracy for questions and 76.3% (61 out of 80) for
the explanations. Through a preliminary analysis of the cases, we
find the imbalance in the accuracy of the questions and that of the
explanations is mainly due to two points. First, the key information
in the explanations tends to be simpler than that in the questions.
For example, the questions sometimes involve calculations we do
not support (e.g., “Which variety has the largest sum of yield?”)
while the explanations involve fewer such expressions. Second,
there seems to be a higher ratio of valid explanations provided with
simple charts (e.g., simple bar chart) compared to those with more
complex ones (e.g., grouped bar chart). The reason might be that
people make valid explanations more easily with simpler charts.

Among the failure cases, 85.2% (46 out of 54) fail in mention
detection (Stage II) and only 14.8% (8 out of 54) fail in reference
mapping (Stage III). The errors mainly lay in mention detection,
which is consistent with our knowledge and experiences. On
the one hand, effectively extracting keywords from the text and
understanding their meaning in the context is a challenging task. On
the other hand, in most cases it involves neither complex relations
of the key phrases nor complex relationships between the text
references and the visual elements.

6.2.3 Failure Conditions
According to the result of this experiment and our experience in
developing the model, we distinguish three conditions in which our
model may fail:
Human knowledge is required to resolve ambiguities or to
recognize key phrases. In some cases, the text may contain
keywords which are not included in the data. For example, in
the sentence “How many countries in Asia will have their economy
improved based on majority votes”, our model cannot understand
“countries in Asia” since it does not have the knowledge about
which countries are in Asia.
Challenging NLP tasks are involved in processing the text. When
the dependency structure of the sentence is complex, which involves
multiple clauses, the dependency parsing module may fail. Besides,
we do not implement coreference resolution since we found there
too many errors in the coreference resolution functions of the NLP
tools we have tested. Thus, it cannot recognize those pronouns.
Further calculations are required to resolve the relationship
between text and visualizations. Our model does not support
finding VEs through combining different calculations, such as
finding which company has the largest sum of sales.

Fig. 11. The examples of our method in supporting scatter plot, bubble
chart, pie chart, and donut chart.

Among the above-mentioned failure conditions, the third one
is beyond the scope of the present work. It requires specific
mechanisms to map natural language to computational processes
and we are currently unaware of the possible solutions. The first
and second conditions are expected to be solved by human users via
the interactions we provided. We regard these failure conditions as
a limitation of the natural language understanding capability. The
pathways to improving it is further discussed in the third limitation
(Capability of Natural Language Understanding) in Section 7.1.

7 DISCUSSION

Through the replication of the key functions in the previous
works and the evaluation based on the prototype system, we
demonstrate the usability and effectiveness of our method. Our
method supports different TVL scenarios. Meanwhile, we allow
users to modify our model’s errors, thereby enhancing its usability
when it makes mistakes. Existing works only allow users manually
link visualizations and text or let it done automatically by their
models, but do not enable users to modify the models’ outputs.
Compared to these works, our work allows users to modify the
results generated by our model. When the results of our model
are partially usable, users do not need to manually build TVLs
from scratch. Instead, they can archive their goals by modifying
the current results, which enhances the efficiency of crafting TVLs.
Through the user study, we found that users were satisfied with the
interactions provided for handling the errors and crafting TVLs.

7.1 Limitations
Although the method can be applied in various applications and
the automatic model achieves reasonable performance, it needs to
be improved in different aspects. We discuss the limitations and
potential pathways for improvement as follows:
Support for Different Types of Visualizations and Data.
Presently, our pipeline works with tabular data and several basic



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

charts (see Figure 11 for examples of supported chart types other
than bar charts and line charts). Our model binds visual elements
with data objects and stores them in KGs so that the visual
representations can be referenced via data values. It may not
work well with those charts where the mapping between the visual
elements and the data objects is more complex (e.g., area charts).
More appropriate representations should be designed for supporting
different types of visualizations.
Support for Visualization Specification. In our work, we focus
on linking text and visualizations and the tasks for specifying
visualizations are suggested to be better supported by external
models. Manually specifying visualizations could be inefficient,
especially there a set of charts to be created [44]. There have been
different techniques for facilitating specifying visualizations (e.g.,
visualization recommendation [45] and natural language interface
(NLI) [31]) to support this task. To our knowledge, a promising
idea is combining NLIs for specifying visualizations according
to the context of the text. To verify this, we hope to explore the
possibilities in the future.
Capability of Natural Language Understanding. Although our
model achieves acceptable performance on the tested text samples,
we find it works poorly when: it lacks the necessary knowledge; it
needs to deal with challenging NLP tasks; further calculations are
required. To address the issue that our model lacks the necessary
knowledge for entity detection, we have considered connecting our
KG to knowledge bases such as Wikipedia. However, incorporating
external knowledge is not easy since there are so many similar
entities and resolving ambiguities via entity resolution is also
challenging. Besides, we employed Stanford’s CoreNLP [32] and
applied heuristics for parsing text, which is ineffective in dealing
with complex sentences that involves clauses, coreferences, and
further calculations. In recent years, large language models (LLMs)
have been used to solve a series of visualization-related tasks [46],
[47], [48], [49]. It would be interesting to explore using LLMs to
enhance the NLP capability of our method.
Design Space of Text-Visualization Linking. In our pipeline, we
allow users to edit the visual style and the integration of text
and visualization. We only explore a small area of the design
space of text-visualization linking and provide baseline choices for
highlighting the referenced visual elements. The effectiveness of
the highlighting techniques for text and visualizations has not been
well tested yet. Further study should be conducted to explore the
design space for linking text and visualizations and compare the
effectiveness of different methods.

8 CONCLUSION

In this work, we propose a semi-automatic pipeline for linking text
and visualizations. To resolve the relationship between text and
visualizations, we employ a model to transform a visualization and
the underlining data into a contextual knowledge graph. Based on
the knowledge graph, the model automatically maps key phrases
to the visual elements, while allowing users to cooperate with the
model to revise the TVLs. We demonstrate the usability of our
method via several usage scenarios and a user experiment.

ACKNOWLEDGMENT

The work was supported by Key “Pioneer” R&D Projects of
Zhejiang Province (2023C01120), NSFC (U22A2032), and the
Collaborative Innovation Center of Artificial Intelligence by MOE
and Zhejiang Provincial Government (ZJU).

REFERENCES

[1] N. Kong, M. A. Hearst, and M. Agrawala, “Extracting references between
text and charts via crowdsourcing,” in Proc. of the SIGCHI Conf. on
Human Factors in Computing Systems, 2014.

[2] J. Hullman and N. Diakopoulos, “Visualization Rhetoric: Framing effects
in narrative visualization,” IEEE TVCG, 2011.

[3] F. Beck and D. Weiskopf, “Word-sized graphics for scientific texts,” IEEE
TVCG, 2017.

[4] E. Segel and J. Heer, “Narrative Visualization: Telling stories with data,”
IEEE TVCG, 2010.

[5] D. H. Kim, E. Hoque, J. Kim, and M. Agrawala, “Facilitating document
reading by linking text and tables,” in Proc. of the Annual ACM Symposium
on User Interface Software and Technology, 2018.

[6] S. K. Badam, Z. Liu, and N. Elmqvist, “Elastic Documents: Coupling
text and tables through contextual visualizations for enhanced document
reading,” IEEE TVCG, 2018.

[7] S. Latif, Z. Zhou, Y. Kim, F. Beck, and N. W. Kim, “Kori: Interactive
synthesis of text and charts in data documents,” IEEE TVCG, 2021.

[8] J. Hullman, N. Diakopoulos, and E. Adar, “Contextifier: Automatic
generation of annotated stock visualizations,” in Proc. of the SIGCHI
Conf. on Human Factors in Computing Systems, 2013.

[9] T. Gao, J. R. Hullman, E. Adar, B. Hecht, and N. Diakopoulos,
“NewsViews: An automated pipeline for creating custom geovisualizations
for news,” in Proc. of the SIGCHI Conf. on Human Factors in Computing
Systems, 2014.

[10] C. Bryan, K.-L. Ma, and J. Woodring, “Temporal Summary Images: An
approach to narrative visualization via interactive annotation generation
and placement,” IEEE TVCG, 2016.

[11] C. Lai, Z. Lin, R. Jiang, Y. Han, C. Liu, and X. Yuan, “Automatic
annotation synchronizing with textual description for visualization,” in
Proc. of the SIGCHI Conf. on Human Factors in Computing Systems,
2020.

[12] S. Latif, D. Liu, and F. Beck, “Exploring interactive linking between text
and visualization.” in EuroVis (Short Papers), 2018.

[13] Cai, Weiyi and Gamio, Lazaro and Leatherby, Lauren and McCann,
Allison, “The pandemic has split in two,” 2021, [Accessed 12-December-
2021]. [Online]. Available: https://www.nytimes.com/interactive/2021/05/
15/world/covid-inequality-vaccines.html

[14] D. H. Kim, E. Hoque, and M. Agrawala, “Answering questions about
charts and generating visual explanations,” in Proc. of the SIGCHI Conf.
on Human Factors in Computing Systems, 2020.

[15] N. Sultanum, F. Chevalier, Z. Bylinskii, and Z. Liu, “Leveraging text-chart
links to support authoring of data-driven articles with vizflow,” in Proc. of
the SIGCHI Conf. on Human Factors in Computing Systems, 2021.

[16] A. Srinivasan, S. M. Drucker, A. Endert, and J. Stasko, “Augmenting
visualizations with interactive data facts to facilitate interpretation and
communication,” IEEE TVCG, 2018.

[17] P. Goffin, W. Willett, J.-D. Fekete, and P. Isenberg, “Design considerations
for enhancing word-scale visualizations with interaction,” in Posters of
the IEEE Conf. on Information Visualization, 2015.

[18] S. Latif, K. Su, and F. Beck, “Authoring combined textual and visual
descriptions of graph data.” in EuroVis (Short Papers), 2019.

[19] R. Metoyer, Q. Zhi, B. Janczuk, and W. Scheirer, “Coupling story
to visualization: Using textual analysis as a bridge between data and
interpretation,” in International Conf. on Intelligent User Interfaces, 2018.

[20] K. Thellmann, M. Galkin, F. Orlandi, and S. Auer, “LinkDaViz–automatic
binding of linked data to visualizations,” in International Semantic Web
Conference. Springer, 2015.

[21] B. Dumas, T. Broché, L. Hoste, and B. Signer, “Vidax: An interactive
semantic data visualisation and exploration tool,” in Proc. of the Interna-
tional Working Conference on Advanced Visual Interfaces, 2012.

[22] F. Haag and T. Ertl, “Filter Dials: Combine filter criteria, see how much
data is available,” in Proc. of the International Working Conf. on Advanced
Visual Interfaces, 2014.

[23] S. Xia, N. Anzum, S. Salihoglu, and J. Zhao, “KTabulator: Interactive ad
hoc table creation using knowledge graphs,” in Proc. of the SIGCHI Conf.
on Human Factors in Computing Systems, 2021.

[24] B. Chan, L. Wu, J. Talbot, M. Cammarano, and P. Hanrahan, “Vispedia: In-
teractive visual exploration of wikipedia data via search-based integration,”
IEEE TVCG, 2008.

[25] Y. Liu, Y. Ma, Y. Zhang, R. Yu, Z. Zhang, Y. Meng, and Z. Zhou,
“Interactive optimization of relation extraction via knowledge graph
representation learning,” Journal of Visualization, 2024.

[26] D. Cashman, S. Xu, S. Das, F. Heimerl, C. Liu, S. R. Humayoun,
M. Gleicher, A. Endert, and R. Chang, “CAVA: A visual analytics system
for exploratory columnar data augmentation using knowledge graphs,”
IEEE TVCG, 2020.

https://www.nytimes.com/interactive/2021/05/15/world/covid-inequality-vaccines.html
https://www.nytimes.com/interactive/2021/05/15/world/covid-inequality-vaccines.html


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[27] H. Li, Y. Wang, S. Zhang, Y. Song, and H. Qu, “KG4Vis: A knowledge
graph-based approach for visualization recommendation,” IEEE TVCG,
2022.

[28] J. Heer, “Agency Plus Automation: Designing artificial intelligence into
interactive systems,” Proc. of the National Academy of Sciences, 2019.

[29] G. Antoniou and F. Van Harmelen, A semantic web primer. MIT press,
2004.

[30] T. Gao, M. Dontcheva, E. Adar, Z. Liu, and K. G. Karahalios, “Datatone:
Managing ambiguity in natural language interfaces for data visualization,”
in Proc. of the Annual ACM Symposium on User Interface Software and
Technology, 2015.

[31] A. Narechania, A. Srinivasan, and J. Stasko, “NL4DV: A toolkit for
generating analytic specifications for data visualization from natural
language queries,” IEEE TVCG, 2020.

[32] “CoreNLP.” [Online]. Available: https://stanfordnlp.github.io/CoreNLP/
index.html

[33] E. Hoque, V. Setlur, M. Tory, and I. Dykeman, “Applying pragmatics
principles for interaction with visual analytics,” IEEE TVCG, 2017.

[34] A. Srinivasan and J. Stasko, “Orko: Facilitating multimodal interaction
for visual exploration and analysis of networks,” IEEE TVCG, 2017.

[35] S. He, Y. Chen, Y. Xia, Y. Li, H.-N. Liang, and L. Yu, “Visual Harmony:
text-visual interplay in circular infographics,” Journal of Visualization,
2024.

[36] N. Chotisarn, S. Gulyanon, T. Zhang, and W. Chen, “VISHIEN-MAAT:
Scrollytelling visualization design for explaining siamese neural network
concept to non-technical users,” Visual Informatics, vol. 7, no. 1, 2023.

[37] H. Strobelt, D. Oelke, B. C. Kwon, T. Schreck, and H. Pfister, “Guidelines
for effective usage of text highlighting techniques,” IEEE TVCG, 2015.

[38] S. M. Rebelo, T. Martins, D. Ferreira, and A. Rebelo, “Towards the
automation of book typesetting,” Visual Informatics, 2023.

[39] “pandas.” [Online]. Available: https://pandas.pydata.org/
[40] “RDFLib.” [Online]. Available: https://rdflib.readthedocs.io/en/stable/
[41] “D3.js.” [Online]. Available: https://d3js.org/
[42] “Ant Design.” [Online]. Available: https://ant.design/
[43] T. Mikolov, É. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin,

“Advances in pre-training distributed word representations,” in Proc. of the
International Conf. on Language Resources and Evaluation, 2018.

[44] P. Soni, C. de Runz, F. Bouali, and G. Venturini, “A survey on automatic
dashboard recommendation systems,” Visual Informatics, 2024.

[45] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe,
and J. Heer, “Voyager: Exploratory analysis via faceted browsing of
visualization recommendations,” IEEE TVCG, 2015.

[46] Y. Ye, J. Hao, Y. Hou, Z. Wang, S. Xiao, Y. Luo, and W. Zeng, “Generative
AI for Visualization: State of the art and future directions,” Visual
Informatics, 2024.

[47] Y. Tian, W. Cui, D. Deng, X. Yi, Y. Yang, H. Zhang, and Y. Wu,
“ChartGPT: Leveraging LLMs to generate charts from abstract natural
language,” IEEE TVCG, 2024.

[48] L. Shen, Y. Zhang, H. Zhang, and Y. Wang, “Data Player: Automatic
generation of data videos with narration-animation interplay,” IEEE TVCG,
2023.

[49] Y. Zhao, Y. Zhang, Y. Zhang, X. Zhao, J. Wang, Z. Shao, C. Turkay,
and S. Chen, “LEVA: Using large language models to enhance visual
analytics,” IEEE TVCG, 2024.

Xiwen Cai is currently a Ph.D. candidate in the
State Key Lab of CAD&CG, Zhejiang University
in China. He received his B.Sc. degree in Psy-
chology and M.Sc degree in Computer Science
from Zhejiang University. His research interests
include human computer interaction and visual
analytics.

Di Weng Dr. Di Weng is a ZJU100 Young Pro-
fessor at School of Software Technology, Zhe-
jiang University. His main research interest lies
in information visualization and visual analytics,
focusing on interactive data transformation and
spatiotemporal data analysis. He received his
Ph.D. degree in Computer Science from State
Key Lab of CAD&CG, Zhejiang University. Prior
to his current position, Dr. Weng was a researcher
at Microsoft Research Asia from 2022 to 2023.
For more information, please visit https://dwe.ng.

Taotao Fu was a master student in School
of Software Technology, Zhejiang University in
China. He received his B.Sc. degree in Computer
Science from Zhejiang University City College.
His research interests mainly include big data
and data mining.

Dr. Siwei Fu is a tenure-track Associate Profes-
sor in the School of Management, Zhejiang Lab.
His main research interests include visual analyt-
ics, human-AI collaborative decision-making, and
natural language interfaces. He received his Ph.D.
degree in Computer Science and Engineering
from the Hong Kong University of Science and
Technology. For more information, please visit
https://fusiwei339.bitbucket.io.

Yongheng Wang Yongheng Wang is a research
specialist in Big Data Intelligence Research cen-
ter of Zhejiang Lab. His research interests include
Big data analytics, machine learning and intelli-
gent decision making. His current research is on
intelligent interactive data analysis, with empha-
sis on the intelligent algorithms to support real-
time response and knowledge-based analysis.

Dr. Yingcai Wu is a Professor at the State Key
Lab of CAD&CG, Zhejiang University. His main
research interests are information visualization
and visual analytics, with focuses on urban com-
puting, sports science, immersive visualization,
and social media analysis. He received his Ph.D.
degree in Computer Science from the Hong Kong
University of Science and Technology. Prior to
his current position, Dr. Wu was a postdoctoral
researcher in the University of California, Davis
from 2010 to 2012, and a researcher in Microsoft

Research Asia from 2012 to 2015. For more information, please visit
http://www.ycwu.org.

https://stanfordnlp.github.io/CoreNLP/index.html
https://stanfordnlp.github.io/CoreNLP/index.html
https://pandas.pydata.org/
https://rdflib.readthedocs.io/en/stable/
https://d3js.org/
https://ant.design/

	Introduction
	Related work
	Intelligently Linking Text and Visualizations
	Data Visualization with Knowledge Graphs

	Knowledge Graph Usage
	Overview
	Task Analysis
	Pipeline and Prototype System
	Stage I: Context Preparation
	Stage II: Mention Detection
	Stage III: Reference Mapping
	Stage IV: Visual Linking

	Implementation and Performance Analysis

	Usage Scenarios
	Crafting Online Documents with Interactive Word-Sized Visualizations
	Specifying Chart-Text Interactions in Interactive Documents

	Evaluation
	User Study
	Participants and Experiment Design
	Result
	User Feedback

	Model Evaluation
	Test 1: Reference Detection
	Test 2: Associating Text with Visual Elements
	Failure Conditions


	Discussion
	Limitations

	Conclusion
	References
	Biographies
	Xiwen Cai
	Di Weng
	Taotao Fu
	Dr. Siwei Fu
	Yongheng Wang
	Dr. Yingcai Wu


