
StructVizor: Interactive Profiling of Semi-Structured Textual Data
Yanwei Huang

State Key Lab of CAD&CG

Zhejiang University

Hangzhou, Zhejiang, China

huangyw@zju.edu.cn

Yan Miao

State Key Lab of CAD&CG

Zhejiang University

Hangzhou, Zhejiang, China

ymiao@zju.edu.cn

Di Weng
∗

School of Software Technology

Zhejiang University

Ningbo, Zhejiang, China

dweng@zju.edu.cn

Adam Perer

Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

adamperer@cmu.edu

Yingcai Wu

State Key Lab of CAD&CG

Zhejiang University

Hangzhou, Zhejiang, China

ycwu@zju.edu.cn

Figure 1: An overview of StructVizor’s architecture. (A) StructVizor first divides the raw dataset into a sample set and a remaining
set (A1). Using the sample set, it parses data into records (A2), which are then divided into fields (A3). The fields are clustered
and aligned (A4) to identify structural patterns of data records, on top of which records can be clustered (A5). The fields can be
further iteratively divided into subfields as specified by the user (A6), and relationships between the fields and subfields are
then mined to uncover patterns (A7). The profiling results are then visualized on the interface (B), with a variety of interactions
provided for users to apply transformations to the dataset or construct relational tables (C).

ABSTRACT
Data profiling plays a critical role in understanding the structure

of complex datasets and supporting numerous downstream tasks,

such as social media analytics and financial fraud detection. While

existing research predominantly focuses on structured data formats,

a substantial portion of semi-structured textual data still requires

ad-hoc and arduous manual profiling to extract and comprehend

its internal structures. In this work, we propose StructVizor, an in-

teractive profiling system that facilitates sensemaking and transfor-

mation of semi-structured textual data. Our tool mainly addresses

two challenges: a) extracting and visualizing the diverse structural

patterns within data, such as how information is organized or re-

lated, and b) enabling users to efficiently perform various wrangling

operations on textual data. Through automatic data parsing and

structure mining, StructVizor enables visual analytics of structural

patterns, while incorporating novel interactions to enable profile-

based data wrangling. A comparative user study involving 12 par-

ticipants demonstrates the system’s usability and its effectiveness

in supporting exploratory data analysis and transformation tasks.

CCS CONCEPTS
•Human-centered computing→Visual analytics; Interactive
systems and tools.

∗
Di Weng is the corresponding author.

KEYWORDS
Semi-structured textual data, data profiling, visual analytics

1 INTRODUCTION
Distilling concise metadata such as the representations, patterns,

and quality measures from raw datasets, also known as data profil-

ing, is a critical step in the pipelines of data practitioners [6, 7, 57].

Data profiles are essential for activities such as assessing data qual-

ity, enabling efficient data cleaning, and improving comprehen-

sion of data patterns, ensuring that datasets meet analysis require-

ments [57]. This foundational step underpins various downstream

tasks, including data analysis and model training [5, 7]. For in-

stance, in social media analytics, data profiling helps practitioners

assess the quality and structural characteristics of user-generated

content, enabling the detection of missing values, inconsistent for-

mats, and data distribution anomalies before conducting deeper

analytical tasks. However, despite the existence of many tools or

commercial systems for textual data profiling, most of them fo-

cus on relational data or standard semi-structured data (e.g., XML,

RDF, and JSON) [6, 65, 72]. A significant amount of data character-

ized by heterogeneous, meaningful, and ad-hoc textual structures

(e.g., HTML lists and log files), which we refer to as complex semi-

structured data, receives considerably less attention. The diverse

structures present in such data poses significant challenges on effec-

tive data profiling [34]. Accurately detecting and extracting these

ad-hoc structures is difficult, and it is equally challenging to visually

ar
X

iv
:2

50
3.

06
50

0v
1 

 [
cs

.H
C

] 
 9

 M
ar

 2
02

5

https://orcid.org/0009-0001-9453-7815
https://orcid.org/0009-0002-1405-7377
https://orcid.org/0000-0003-2712-7274
https://orcid.org/0000-0002-8369-3847
https://orcid.org/0000-0002-1119-3237


Yanwei Huang, Yan Miao, Di Weng, Adam Perer, and Yingcai Wu

interpret these structures into actionable insights that facilitate the

analysis of textual data.

Prior studies have proposed many automated approaches for de-

tecting structural patterns with heuristic parsing algorithms [20, 22,

28] or program synthesis, including regular expression synthesis,

techniques [13, 52, 74]. However, these methods typically assume

that the given textual data adheres to a uniform and consistent

structure, making it difficult to handle heterogeneous data with

diverse structural patterns. To address this limitation, recent tools

like Microsoft SQL Server Data Tools [54], Ataccama One [12], and

FlashProfile [59] divide textual data into several clusters and extract

structural patterns as regular expressions for each cluster. Never-

theless, representing data with one or multiple regular expressions

lacks flexibility in controlling pattern extraction granularity (e.g.,

representing dates as a whole rather than the obscured regular ex-

pression \d{4}-\d{2}-\d{2}) and merging semantically-identical

patterns (e.g., combining the dates in different formats). The regular-

expression-based approaches also pose challenges for users in inter-

preting the meaning of complex regular expressions and associating

the structural patterns with the corresponding elements in textual

data. Moreover, how the extracted structural patterns can facili-

tate data understanding and downstream tasks like textual data

wrangling remains largely unexplored.

Given the existing limitations, we are motivated to design an

interactive interface that enables visual profiling of semi-structured

textual data and facilitates textual data wrangling based on data

profiles. According to our initial design attempts, two major chal-

lenges are identified: First, extracting and visualizing structural
patterns for data profiling can be challenging to due to the di-

versity of patterns, such as compositions and nested substructures

within data records, as well as implicit relationships or dependen-

cies between data segments. Meanwhile, it is equally challenging

to support various wrangling operations based on data pro-
files, as data profiling is often used as a foundational step for data

wrangling. Despite prior research on enhancing tabular data wran-

gling with data profiles [44], the potential of profiles on improving

wrangling tasks for semi-structured textual data, such as cleaning

inconsistent formats and reorganizing components, remains largely

unexplored, urging the need for novel interaction designs.

In this paper, we propose StructVizor, an interactive visual profil-

ing system for semi-structured textual data. The system comprises

a data processing pipeline that automatically parses input textual

data and extracts structural patterns. The resulting data profiles

are visualized with an interactive interface, empowering users to

understand data structures and uncover actionable insights. More-

over, StructVizor leverages these profiles to facilitate textual data

wrangling, enabling users to transform the data format or construct

relational tables from specific text segments with novel interactions.

To evaluate StructVizor, we conducted a user study (N=12) compar-

ing the system to Wrangler [44], a representative data wrangling

interface with basic profiling functionalities. The results indicated

that most participants completed the data wrangling task more

quickly with StructVizor. Meanwhile, all participants reported sign-

ficantly lower workload except for the mental workload dimension

when using StructVizor. Additionally, through an open-ended task

on a complicated log dataset, we demonstrated that participants

found StructVizor’s data profiles and interactions intuitive and

effective for explorative data analysis.

The contributions of the paper are as follows.

• We propose a novel visual profiling approach for semi-

structured textual data combining automatic structure min-

ing and visual pattern interpretation and analysis.

• We propose an interactive system, StructVizor, depicting

the visual profiling results and supporting profile-based

data wrangling, enabling users to perform a diverse range

of data transformations in an efficient and seamless way.

• We conducted an user study comparing StructVizor with

Wrangler to demonstrate the usability and efficiency in data

wrangling, while also revealing StructVizor’s effectiveness

in explorative data analysis through an open-ended task.

2 RELATEDWORK
2.1 Data profiling
Defined as the process of acquiring metadata that succinctly charac-

terizes the raw data, data profiling plays a key role in understanding

data and significantly influences downstream tasks such as data

wrangling and analysis [7, 45, 57]. Despite its importance, existing

research primarily lies in the context of relational data, a well-

structured data format. Numerous tools have been proposed to

handle various profiling tasks, including calculating table statistics,

detecting table quality issues, and determining the table schema

and patterns [29, 41, 45, 55, 58, 61, 66]. For systematic surveys of

these systems, see the work by Abedjan et al. [6] and Naumann [57].

By contrast, fewer research efforts have been devoted to profiling

less structured data formats, which are often flexibly and intri-

cately organized and thus much more difficult to handle. Several

approaches and systems are available for diagnosing and parsing

other standard semi-structured formats like JSON, CSV, XML, and

RDF [14, 15, 21, 32, 67, 72]. However, a significant proportion of real-

world semi-structured data, such as custom logs and certain HTML

lists, remains ad-hoc, exhibiting more random, heterogeneous, and

complex structures [22, 28, 34].

There have been a few studies on profiling such ad-hoc semi-

structured data. Some of these approaches employ heuristic al-

gorithms or program synthesis techniques to generate extraction

scripts or regular expressions that describe the data structure [13, 20,

22, 28, 52, 74]. However, these methods assume that the data follows

a uniform or predefined structure, which limits their applicability.

Recent research studies and commercial products have introduced

features that support clustering text and summarizing patterns for

each category based on regular expression [12, 34, 54, 59, 68]. How-

ever, directly presenting the patterns through regular expressions is

neither intuitive for comprehension nor effective for detailed anal-

ysis, such as comparing subpatterns and associating patterns with

the raw data. StructVizor contrasts prior works by offering a visual

profiling approach to facilitate structure-related visual analytics.

Additionally, it leverages the profiling results as a foundation for

downstream tasks such as data wrangling.



StructVizor: Interactive Profiling of Semi-Structured Textual Data

2.2 Visual analytics for textual data
Understanding large amounts of textual data in a short period is

challenging for human beings. Therefore, visual analytics tech-

niques that assist people in understanding and analyzing textual

data have been extensively studied [9]. However, most existing

systems are tailored for general documents, which are often un-

structured or with few structural patterns, and there is relatively

less focus on structurally organized text. CiteRivers [38] focuses

on bibliographic data and facilitates visual exploration of citation

entries. Latif et al. [48] present an approach to augment text of

authors’ profiles with visualizations. Despite their effectiveness,

they are designed for text of specific domains. Most relevant to

this work, Lee et al. [49] propose an interface that allows users

to manually process textual data through interactive widgets and

provides dashboards to visualize the extracted data entities. How-

ever, the manual data preparation process can be demanding for

users. StructVizor contrasts these works by enabling automatic

data parsing and structure mining, while offering expressive visual

profiles to reveal diverse structural patterns.

Additionally, as crucial components in visual analytics systems

for textual data, various text visualizations have been proposed

to accommodate different analysis requirements, such as keyword

searching [25, 47, 64, 70], topic mining [23, 24, 51], and discourse

analysis [75]. However, most text visualizations primarily address

the statistical and semantic features of text rather than its syntactic

or lexical ones. These latter visualizations rely on specific struc-

tural representations and primarily operate at the word level. For

example, syntactic patterns are commonly represented using regu-

lar expressions, and techniques like glyph collections or statechart

diagrams are employed to visualize them [3, 4]. Strobelt et al. [63]

annotate words according to the part-of-the-speech tags or vector

embeddings generated by machine learning models. Meanwhile, to

clearly reveal patterns, visualizations that align these patterns for

comparison have been proposed, such as heatmaps, tabular views,

and text variant graphs [35, 60, 62]. [73] provides a comprehen-

sive survey on these visualizations. Built upon these visualizations,

StructVizor proposes a visual analytics approach that reveals di-

verse patterns in semi-structured textual data. It further offers a

wider range of interactions to support detailed analysis tasks, such

as subpattern inspection and hierarchical views of structures. It

also provides interactions for efficient data transformation based

on the visual profiling results.

3 DESIGN GOALS
To inform the system design, we have closely collaborated with

three experienced data practitioners (P1-P3) whose work heavily

involved semi-structured data. P1 was a software testing engineer

who frequently analyzed log data to debug or compose performance

reports. P2 was a researcher who focused on natural language inter-

faces for data visualization and was experienced in data wrangling

to train language models. P3 was a senior Ph. D. student who re-

searched in semi-structured data profiling for five years. We shared

our initial ideas and artifacts generated from the iterative design

process with them through bi-weekly meetings over a nine-month

period. Additionally, we conducted monthly feedback sessions with

a group of twenty students who had varying degrees of experience

working with semi-structured data to gather insights and feedback.

During these sessions, we presented our design mock-ups or proto-

types, and engaged in open-ended discussions to understand their

need and gathered suggestions for improvement. Consequently, we

have identified the following design goals (DG):

DG1: Automatic, controllable, and transparent data pars-
ing and structural analysis. Initially, our collaborators sought
an automatic data processing strategy to eliminate manual parsing

and structural analysis. However, through design iterations, we

discovered that a fully automatic approach, which attempts to mine

all possible patterns without human intervention, would not only

lead to an overwhelming amount of calculation but also limit users’

ability to inspect and control the data processing pipeline. For exam-

ple, we often received user inquiries regarding the technical details

of the processing pipeline. Users expressed a desire for visibility

into hyperparameters, such as the granularity of data parsing and

clustering, allowing for manual adjustments. Additionally, they

wanted the ability to edit profiles to correct any potential errors.

DG2: Facilitate overall and detailed sensemaking of com-
mon structural patterns through visualizations. Raw results of

structural analysis can be hard to interpret for users. For instance,

even experienced users complained to us about the effort spent in

interpreting numerous and lengthy regular expressions, urging for

intuitive visual aids. Meanwhile, given the abundance of patterns,

they also wished to quickly grasp the key information about the

structural patterns in the dataset while also having the option to

explore interested patterns in detail.

DG3: Associate profiling results with raw data. While data

profiling provides a succinct abstraction of the raw dataset, users

reported that they could get lost without appropriate explanations

of profiling results, such as which parts of the raw data contributed

to the given statistics or contained the patterns. Therefore, given

the complexity of our system, view coordination [18] should be

carefully designed and cover most system components, faciliating

always-on navigation and revealing hidden patterns.

DG4: Enable in-situ data wrangling on structures. In our ini-
tial system design, users could extract data segments into a separate

view for interactive data wrangling. However, this proved to be inef-

ficient with high interaction numbers. They suggested to integrate

a flexible structure view that enables data component manipulation

directly through interactions, enhancing in-situ data wrangling.

The challenge lies in designing interactions that align with existing

views, with each one tailored based on the specific wrangling task

for intuitiveness. It is even challenging that the interactions should

be expressive enough to support diverse text wrangling operations,

whose space, however, remains largely unexplored.

DG5: Support table construction from profiling results.
While text transformations can accommodate various scenarios,

structured formats like relational tables are still more readily con-

sumed by downstream tasks. Therefore, it is crucial to enable users

to construct tables directly from the profiling results.

Additionally, based on DG2 and DG4, we have conducted content

surveys of common structural patterns and wrangling operations in

semi-structured data management. We discuss the detailed results

in Section 3.1 and 3.2.



Yanwei Huang, Yan Miao, Di Weng, Adam Perer, and Yingcai Wu

3.1 Structural patterns of semi-structured data
We have conducted a literary review of papers with keywords in-

cluding semi-structured data, textual data, log data, and data trans-

formation. We also review surveys on relation extraction and text

mining [43, 56]. Since the system takes general semi-structured data

as input, we made sure to exclude those focused on domain-specific

patterns, such as event sequence patterns in log analysis [36], to

maintain the focus on the broader aspects of data structures. Based

on these papers and our experience, we have thus summarized the

following structural patterns (SP):

SP1: Organization. One distinguishing characteristic of semi-

structured data is its organization as a list of elements, often called

records in prior literature [21], within the data. These records can

be further divided into fields that carry distinct semantic mean-

ings. The boundaries between records or fields can be either ex-

plicit, marked by specific delimiters, or implicit, with no delimiters

present [34]. Additionally, some datasets may also include con-

textual information, such as headers and footnotes, that does not

belong to the metadata [21].

SP2: Sub-structures. In addition to the overall structure of the

dataset, its components can also exhibit interesting sub-structures.

For example, within the fields of log data, there may be special for-

mats such as timestamps, dates, URLs, or even nested structures like

JSON objects [21, 26, 34, 67]. These sub-structures provide further

insights into the organization and content of the data, and under-

standing them is crucial for effective analysis and interpretation.

SP3: Data relationships. Similar to function dependency in rela-

tional databases, relationships are also prevalent in semi-structured

data [11, 16, 71]. For instance, given a record “𝑢𝑠𝑒𝑟𝐼𝑑 : 95001, 𝑝𝑎𝑡ℎ :

𝑎𝑝𝑖/𝑞𝑢𝑒𝑟𝑦/95001”, the path is determined by the corresponding user

ID. More complex patterns include values with matched prefixes/-

suffixes, sequential order, or specific positional spacing [10, 16, 76].

SP4: Hierarchies. Several works on textual data mining have

stressed the “granularity” or “specificity” of structural patterns [16,

59], showing that data fields are often naturally hierarchical. For

example, a date format can be interpreted either as a whole or de-

composed into their constituent parts, such as year, month, and day.

Even a seemingly simple numerical field can be further categorized

based on its digits, depending on the specific scenario. Recognizing

and understanding these hierarchical structures can allow for a

more nuanced analysis and interpretation of the data.

3.2 Wrangling operations of semi-structured
data

To cover common wrangling operations for semi-structured data,

we compile a set of operations by drawing from existing literature

on data wrangling for tabular data [19, 40, 44, 46] and standard

semi-structured data formats [50, 72]. We also incorporate common

text transformation operations found in libraries such as Pandas [1].

• Create. Add content to the dataset, such as including new

data records or enclosing words with additional quotation

marks.

• Delete. Remove content from the dataset, which may in-

volve deleting leading spaces, filtering subsets of data, or

organizing extracted data into a new structured file.

• Transform. Convert data records or fields in a one-to-one

manner. This includes string replacement, capitalization,

and pattern testing, often using regular expressions.

• Separate.Map selected items to multiple values, typically

using functions like split to divide strings into components.

• Combine. Merge multiple records or fields into a single

value. This encompasses operations such as concatenation,

aggregation, and joining to consolidate data from various

sources.

• Schema. Adjust the dataset based on its abstracted schema

rather than data values. This can include removing redun-

dant keys in JSON [72], rearranging field orders, or chang-

ing the identified data types for each field.

4 USAGE SCENARIO
Informed by the design goals, we designed StructVizor, a visual

profiling system of complex semi-structured data. Figure 2 illus-

trates the interface of StructVizor, which consists of three views:

a data view (B) displaying the raw dataset, a structure view (A)

showing mined structural patterns, and a wrangler view (C) for

table construction after analysis.

Next, we walk through its usage through a scenario, where a

data analyst, Peter, is going to use StructVizor to analyze and clean

a citation dataset with multiple data issues. The dataset contains

citation entries of heterogeneous structures, covering various infor-

mation such as authors, publication years, DOIs, and so on. Note

that the dataset is in plain text, formatted as a concatenation of

citation entries.

Peter begins by importing the dataset into StructVizor, which

automatically parses the dataset, mines the data patterns, and visu-

alizes the results on the interface. He initially examines the data

records in the data view (Figure 3 (A)) and observes that the records

are grouped into two clusters, indicated by the colors green and

blue. From the thumbnail view on the right, Peter observes that

the green records primarily appear at the beginning and end of

the dataset, while the central part contains blue records. He clicks

on the first green record and finds that it contains three fields: a

citation index, a title, and a URL. Similarly, he selects an arbitrary

blue record and discovers some additional fields within it, such as

authors, venues, and DOI. This exploration gives him a preliminary

understanding that records in different clusters have significantly

distinct structures.

Next, Peter switches to the structure view (Figure 3 (B)) to inves-

tigate the detailed structures. In this view, each row represents a

record, each column represents a field, and each cell represents the

value of a specific field in the corresponding record. Cell heights

indicate the number of records containing this field, and the color

encoding is the same with the data view. He discovers that all green

records commence with a citation index (e.g., [1]), and most records

include a list of authors (e.g., Chris. M.,...) and a title (e.g., dplyr...).
These records also have an optional DOI field (e.g., doi: 10...) or
a URL (e.g., https:/...). Meanwhile, by following the data flow, he

further notices a few green records that contain a corporation name

(e.g., Google...) after the citation index, followed by a URL. By con-

trast, all blue records start with an author list (e.g., B. Bach...) and a

year (e.g., 2012) while ending with a URL. In addition, a few blue



StructVizor: Interactive Profiling of Semi-Structured Textual Data

Figure 2: The StructVizor system. (A) The structure view visualizes the structural patterns present in the dataset. The relationship
view (A1) illustrates the similarity between different data fields. The tabular view (A2) depicts the dataset’s structural distribution,
where rows represent data records and columns represent data fields. Users can click on cells (A3) to view the value distributions
of records in the selected field. Various interactions are supported for in-situ data wrangling, such as splitting fields into
subfields (A4), applying filters (A5), and performing transformations on cells (A6). (B) The data view displays the annotated
dataset, with parsed data records separated into different lines and clustered (B1). An overview of the dataset is provided
through the thumbnail view (B2). (C) The Wrangler view empowers users to construct relational tables based on the dataset
profiles. Users can navigate to specific records by clicking on the table cells (C1).

Figure 3: Scenes for the usage scenario. (A) The data view after importing the dataset. (B) Cells in the structure view are used
for field analysis and data filtering. (C) The updated structure view for detailed analysis of lengthy unstructured strings. (D)
The heatmap showing the similarity between fields. (E) The relational table in the wrangler view constructed by the user in for
further analysis.



Yanwei Huang, Yan Miao, Di Weng, Adam Perer, and Yingcai Wu

records contain a publisher (e.g., ACM) and a DOI. The structure

view clearly shows that records of different colors have significantly

different field compositions, reinforcing his earlier hypothesis.

With an overview of the dataset in mind, Peter decides to dive

into each field for exploration. He starts by clicking on the first

field, and a bar chart is generated showing the distribution of the

citation indices. He finds that indices [1] to [9] appear twice, more

frequently than the other ones. To figure out the reason, he clicks

on the bars for these indices in the chart to indicate a filter, and

all green records starting with the selected indices are highlighted

in the data view (Figure 3 (A)). Upon inspecting the dataset, he

discovers that the first nine records are duplicated at the end of the

dataset. Consequently, he removes these redundant records.

Next, Peter moves on to inspect the author lists. By double-

clicking on the cell, StructVizor reveals the detailed composition of

this field (Figure 3 (C)). He discovers that the author list comprises

multiple arbitrary strings (where represents arbitrary characters

and indicates characters appearing multiple times) separated by

commas or the word “and”. The number of these strings ranges

from one to six, suggesting that the citations include between one

and six authors. Due to the variability and complexity of the author

list’s substructure, Peter first deletes the delimiters (Figure 3 (C1))

and then drags individual cells together to merge them (Figure 3

(C2)). As shown in the consequent preview panel, StructVizor will

generate a new record for each author while keeping the other

parts of the record unchanged.

After reviewing several fields for insights, Peter shifts his atten-

tion to the heatmap view (Figure 3 (D)). He notices a few grids with

dark colors, indicating strong relationships between pairs of fields.

When he hovers over one of these grids, StructVizor highlights

the corresponding fields in the tabular view. He discovers that the

URL field includes the DOI content string as a substring, which ex-

plains the strong dependency. To eliminate this redundancy, Peter

right-clicks on the DOI field and selects “Delete Cell”. Finally, he
drags several cells that he examined from the tabular view into the

wrangler view to create a relational table (Figure 3 (E)). He then

exports the table for his analysis report.

5 STRUCTVIZOR
This section introduces the detailed design of StructVizor. Fig-

ure 1 shows the overall architecture of StructVizor. Taking a semi-

structured dataset as input, the system first processes data for struc-

ture parsing and pattern mining (A). It then visualizes the profiling

results on an interface (B) where users can interactively inspect

the profiles or perform wrangling operations (C) to modify the raw

dataset or construct a new table.

5.1 Data processing
Following DG1, StructVizor is built upon a data processing module

that automatically parses the raw dataset and analyzes the struc-

tural patterns. DG1 also requires that data with heterogeneous

organizations or diverse structural patterns should be supported.

However, most prior works on structural interpretation of semi-

structured data assume that the data follows a single or uniform

organization style [21, 34]. We have also noticed two exceptions:

UnRavel [59] and DataMaran [31], which can potentially support

data with multiple structural templates. However, both rely heavily

on structural assumptions (e.g., records and fields being delimited

by explicit symbols), and neither tool is open-sourced. This moti-

vates us to design a data processing pipeline that operates without

specific assumptions.

Data processing starts by dividing the raw dataset into a sample

set and a remaining set (Figure 1 (A1)). The sample set is initially

used for parsing and pattern mining, while similar steps are sub-

sequently performed on the remaining set with the assistance of

the previous results. This ensures the scalability of the approach as

the following data parsing involves large language models which

can only accept a small input size. In data parsing, the input data is

decomposed into a series of records (Figure 1 (A2)). Each record can

be divided into fields (Figure 1 (A3)), which can be further divided

into subfields when specified by the user (Figure 1 (A6)). During

structural pattern analysis, the system syntactically clusters the

fields in different records for alignment (Figure 1 (A4)), and uses

the alignment results to cluster the parsed records (Figure 1 (A5)).

It further mines patterns including regular expresssions and data

dependency on the field and subfield levels (Figure 1 (A7)). Next,

we discuss the details of the data processing pipeline.

5.1.1 Data sampling. Given the diverse structures within data,

generating a sample that consists of all major structural patterns

is non-trivial. We propose a sampling approach that begins with

randomly sampling several substrings from different parts of the

dataset. We make sure that the maximum total length of these sub-

strings is 4,000 characters to accommodate large datasets. Since

these substrings may contain broken records, we prompt the GPT-

4o model to capture all complete records within them, taking ad-

vantage of its ability to understand subtle semantic boundaries

between records. The identified records will form the final sample,

which users can further edit and refine through an interactive panel

(Figure 4 (A)) beforing entering the visual profiling interface (DG1).

The prompt template we use for sampling is: Textual data can
be divided into a list of records, which are substrings
and are semantic units. The following data may include
incomplete records. Parse the given data and output
all complete records you could find, return only a JSON
array where all elements are enclosed in double quotes.
Do not add any content before or after this JSON array.
Data: <sampled_string>.

5.1.2 Data parsing. Data records are segments of the raw dataset

with similar structures. For instance, each row in a standard CSV

file can be viewed as a data record. While some semi-structured

data has explicit delimiters for data records (e.g., enter in HTML

lists), the situation becomes more complex for ad-hoc formats. One

typical example is implicit delimiters [22]: assume a space-separated

file with two records “01 Olivia Mitchell Female 02 Ethan Anderson
Male”. In this case, spaces serve not only as separators of records but
also as separators of words, making it infeasible to directly separate

records and fields using spaces alone. Additionally, in some extreme

cases, there may be multiple delimiters or even no delimiter at all.

To take the semantical context into consideration, we lever-

age GPT-4o to divide the input data into records and fields. The

prompt template we use is: Textual data can be divided into
a list of records, where each record can be further



StructVizor: Interactive Profiling of Semi-Structured Textual Data

Figure 4: (A) The panel for importing data. The automatically sampled dataset is initially shown. Users may edit and refine it
before entering the visualization interface. (B) The panel for editing the fields of a record, where users can put the updated
fields in separate lines.

divided into several fields. Fields are substrings of a
record and are semantic units. Delimiters (e.g., enter)
should be preserved as individual fields so that a
record can be retained by concatenating all fields.
Parse the following data into records and fields, and
output them as a JSON (format: [{“fields”: [“...”,
...], ..., ...], where each object represents a record).
Data: <dataset>. Similarly, fields can then be iteratively divided

into subfields with the following prompt template: Fields can
be divided further into a list of subfields, which
are semantic substrings of inputs. Split each field
into subfields. Delimiters (e.g., enter) should be
preserved as individual subfields so that a field can
be retained by concatenating all subfields. In the
following data, each line represents a field. Parse
these fields into subfields, and output them as a JSON
(format: [“subfields”: [“...”, ...], ...], where each
object represents a field). Data: <dataset>. Note that the
subfields are calculated only when specified by the user due to the

potentially large number of fields.

5.1.3 Structural pattern analysis. The process of structural pattern
analysis comprises of three steps: field alignment, record clustering,

and pattern mining.

Field alignment. Informed by DG2, StructVizor aligns fields

with similar structural patterns for profiling. For simplicity we

mainly consider the syntactical structure of fields during the align-

ment and leave other structural patterns for future work. Specifi-

cally, we leverage Microsoft PROSE SDK [53] to cluster the values

of all fields and extract regular expressions for each cluster. During

the alignment, only fields within the same cluster can be aligned.

The alignment process is essentially a multiple sequence alignment
(MSA) problem [27]. However, MSA is known to be NP-complete

with the computational time of an optimal solution growing ex-

ponentially with the record number [69]. To balance between effi-

ciency and performance, we follow a greedy approach where we

iterate over all records and align the 𝑛-th record with the previously

aligned 𝑛 − 1 records, which can be easily solved using dynamic

Algorithm 1 The field alignment algorithm

Input : an array of records 𝑅

Output : a 2-dimensional array 𝑇 indicating the aligned table

1: procedure alignFields(𝑅)
2: 𝑁 ← len(𝑅)
3: 𝑇 ← Array[𝑁 ] [] ⊲ Dynamic length

4: 𝑇 [0] ← 𝑅 [0]
5: for 𝑖 = 1 to 𝑁 − 1 do
6: 𝑖𝑛𝑑𝑒𝑥𝑒𝑠𝑂 𝑓 𝐴𝑙𝑖𝑔𝑛𝑒𝑑𝐶𝑜𝑙𝑢𝑚𝑛𝑠 ← align(𝑅 [𝑖], 𝑅 [0..𝑖 − 1])

⊲ The optimal alignment by dynamic programming

7: for 𝑗 = 0 to len(𝑅 [𝑖]) do
8: if 𝑗 ∈ 𝑖𝑛𝑑𝑒𝑥𝑒𝑠𝑂 𝑓 𝐴𝑙𝑖𝑔𝑛𝑒𝑑𝐶𝑜𝑙𝑢𝑚𝑛𝑠 then

updateTable(𝑇 , 𝑛𝑒𝑤𝐶𝑜𝑙𝑢𝑚𝑛 = 𝑓 𝑎𝑙𝑠𝑒) ⊲ Put

𝑅 [𝑖] .𝑓 𝑖𝑒𝑙𝑑𝑠 [ 𝑗] and the aligned fields in the same column

9: else
updateTable(𝑇 , 𝑛𝑒𝑤𝐶𝑜𝑙𝑢𝑚𝑛 = 𝑡𝑟𝑢𝑒) ⊲ Create a

new blank column and insert 𝑅 [𝑖] .𝑓 𝑖𝑒𝑙𝑑𝑠 [ 𝑗] into it

10: end if
11: end for
12: end for
13: return 𝑇

14: end procedure

programming. The pseudo-code for this approach is outlined in

Algorithm 1.

Record clustering. Similarly following DG2, StructVizor clus-

ters the records to help users efficiently distinguish between differ-

ently structured records in the data overview. Based on the field

alignment results, records can be viewed as aligned sequences of

equal lengths and their differences can be measured with Hamming

Distance. Formally, let𝑀 be the number of columns derived from

the alignment, the distance between any pair of records (𝑟𝑖 , 𝑟 𝑗 ) is
defined as:

𝑑𝑖𝑠𝑡 (𝑟𝑖 , 𝑟 𝑗 ) =
𝑀∑︁
𝑘=1

𝑟𝑖𝑘 ⊕ 𝑟 𝑗𝑘



Yanwei Huang, Yan Miao, Di Weng, Adam Perer, and Yingcai Wu

where the value of 𝑎⊕𝑏 is 0 if 𝑎 = 𝑏 and 1 otherwise. We leverage

the DBSCAN algorithm to cluster the records, with hyperparame-

ters like 𝑒𝑝𝑠 customizable by users.

Pattern mining. Informed by DG1 and DG2, StructVizor con-

ducts pattern mining on the data to facilitate users’ sensemaking.

While previous steps have revealed the organization manner of

data and the hierarchical representation of fields, this step aims

to mine additional common patterns to cover the space outlined

in Section 3.1. Specifically, fields or subfields of common special

formats such as URL, DOI, and ISBN are extracted through their

regular expression-based representations learned in the clustering

process. We also mine string prefix and suffix patterns for field val-

ues through enumeration. In addition, various mining approaches

can be used to determine different relationships between fields or

subfields. Currently, we focus on string similarity, but this approach

can be easily extended to encompass more intricate patterns by re-

placing the scoring function below with relevant metrics. Formally,

given the record set 𝑅, the similarity score of two fields 𝑎 and 𝑏, or

𝑆 (𝑎, 𝑏), can be calculated by:

𝑆 (𝑎, 𝑏) = 𝛼

|𝑅′ |
∑︁
𝑟 ∈𝑅′
(1 − 𝐿(𝑟 [𝑎], 𝑟 [𝑏])

𝑚𝑎𝑥 ( |𝑟 [𝑎] |, |𝑟 [𝑏] |) )

where 𝐿 represents the Levenshtein distance, and 𝑟 [𝑎] and 𝑟 [𝑏]
represent the strings of fields 𝑎 and 𝑏 in record 𝑟 . 𝑅′ is the set of
records that contain both the fields 𝑎 and 𝑏:

𝑅′ = {𝑟 ∈ 𝑅 | 𝑟 [𝑎] ≠ ∅, 𝑟 [𝑏] ≠ ∅}
Furthermore, an adjusting factor, denoted as 𝛼 = 𝑙𝑜𝑔10 ( |𝑅′ |), is

introduced to scale the similarity score so that the score will not

become excessively large when only a few unique value pairs exist.

5.1.4 Processing the remaining dataset. Despite the previous steps
for processing the sample dataset, promoting the results to the re-

maining dataset is still non-trivial. Most existing approaches handle

large datasets by synthesizing programs from the sample data and

running them on the remaining data. However, when dealing with

an ad-hoc and heterogeneous dataset, finding a perfect sample can

be challenging, as new structural patterns are inevitable, leading

to potential failures of the synthesized programs. Furthermore, the

organization of the remaining dataset, such as the boundaries be-

tween records and fields, remains unknown, making the parsing

process highly challenging.

In view of this, we propose a more robust and adaptive approach

that models the processing of the remaining data as an optimization

problem. Drawing inspiration from DataMaran [31], we adopt a

template matching approach: each record in the processed sample

dataset can be viewed as a raw structural template. The templates

can be pruned, extended, or modified to match the records in the

remaining set. Our goal is to maximize the number of matched fields

while minimizing the number of characters that do not belong to

any record. Formally, let the number of matched fields be𝑀𝐹 and

the number of unmatched characters be𝑈𝐶 , we define the objective

function 𝑓 as:

𝑓 = 𝑀𝐹 − 𝛼 ·𝑈𝐶
where 𝛼 = 0.01 by default. One can prove that finding the optimal 𝑓

is NP-hard (see the appendix for a proof), and we realized through

Algorithm 2 Algorithm for parsing the remaining dataset

Input : a list of structural templates 𝑆𝑇 and the remaining

1: dataset 𝐷

Output : a 2-dimensional array 𝑅 indicating the parsed data

2: records and fields

3: procedure parseRemainingData(𝑆𝑇 , 𝐷)
4: 𝑅 ← []
5: 𝑁 ← len(𝐷)

6: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥 ← 0

7: while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥 < 𝑁 do
8: 𝑟𝑒𝑐𝑜𝑟𝑑, 𝑛𝑒𝑥𝑡𝐼𝑛𝑑𝑒𝑥 ← findLocallyOptimalMatch-

ing(𝑆𝑇 , 𝐷 [𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥 ..𝑁 − 1])
9: 𝑅.Append(𝑟𝑒𝑐𝑜𝑟𝑑)

10: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑑𝑒𝑥 ← 𝑛𝑒𝑥𝑡𝐼𝑛𝑑𝑒𝑥

11: end while
12: return 𝑅

13: end procedure

our initial attempts that searching for a global optimal solution

can be time-consuming. To balance between performance and time,

we propose a novel algorithm which iteratively finds the locally

optimal template for matching, as outlined in Algorithm 2. The

local matching problem can be solved through dynamic program-

ming in a straightforward way. Note that when matching the data

with templates, we leverage fuzzy matching through the Regex li-

brary [2], allowing variations of the raw templates to accommodate

the heterogeneous data. A match is considered valid only when the

minimum number of changes required to the template for matching

is within a predefined threshold (3 changes for each field in our

implementation). In addition, we have proposed several optimiza-

tions to further expedite the algorithm, and we refer readers to the

appendix for more details.

5.2 Visual profiling
After the data parsing and pattern mining, the profiles are visual-

ized on the interface of StructVizor (DG2). Figure 2 illustrates the

interface of StructVizor, which consists of three views: a data view

(B), a structure view (A), and a wrangler view (C).

5.2.1 Data view. The data view is designed to provide an annotated

view of the raw dataset. The parsed data records are wrapped in

different colors based on the clustering results (Figure 2 (B1)). Since

the dataset can be very large, a thumbnail view is provided as an

overview (Figure 2 (B2)) where users can drag the scrollbar on it

to navigate within the data. While only the records are displayed

by default, users can click on the records to inspect the detailed

fields. Similarly, users can click on the fields to view the subfields.

Moreover, a slider is available to adjust the granularity of record

clustering.

In addition, the data view is equipped with several interactions to

support profile modification in case of potential errors (DG1). Users

can right-click on a data record and select the Edit option from the

menu to adjust parsing results in the result panel (Figure 4 (B)). This

action opens a window where each field appears in a separate row

within an editable text area. Users also have the option to delete a

record or a cluster via the menu. Note that after an edit, only the



StructVizor: Interactive Profiling of Semi-Structured Textual Data

modified record or field will be re-rendered with other parts of the

system unchanged. Whenever the user makes an edit, an “Apply
changes” button will appear at the header of the data view. Users

can click on it after finishing all desired local edits, and StructVizor

will update other views by first adding the updated records to the

sample set, and then rerunning the entire data processing pipeline

except data sampling and data parsing.

5.2.2 Structure view. Designed to visualize the structural patterns,

the structure view includes a relationship view (Figure 2 (A1)) and

a tabular view (Figure 2 (A2)).

Relationship view.The relationship view incorporates a heatmap

visualizing the connections between fields. Each row and column

represents a field and the opacity of each cell encodes the similarity

between a pair of fields. The heatmap supports zooming in and

out, which is especially useful when there are numerous fields to

analyze. When users hover over the cells with their mouse, the

corresponding fields will be highlighted in the tabular view.

Tabular view. The tabular view visualizes the table acquired

in the field alignment process. Each row represents a record, each

column represents a field, and each cell represents the value of a

specific field in the corresponding record. The table is sorted se-

quentially, starting from the first field and progressing towards the

last field. To enhance the readability and reduce visual clutter, adja-

cent cells whose corresponding records belong to the same cluster

are merged into a single cell. The merged cell displays the value

from the field of the first record in the cluster. The color of a cell

represents the cluster to which the corresponding record belongs,

while the opacity of the cell indicates the percentage of unique

values within the merged values. Cells that share common records

are visually connected to facilitate easier navigation. Additionally,

since the original data order is not preserved in the tabular view,

each column in the tabular view is accompanied by an area chart

above it. The area chart represents the positional distribution of the

selected field’s values in the original dataset. For instance, the area

charts in Figure 2 (A2) indicate that records containing the fields in

the first two columns are located at the beginning and the end of

the dataset. This representation helps associate the columns with

the original dataset and provides general distribution information.

Moreover, the tabular view is equippedwithmultiple interactions

to facilitate explorative data analysis. Users can click on a cell to

view the value distribution, with a bar chart for categorical fields

or a histogram for quantitative fields (Figure 2 (A3)). The cell also

contains two buttons where users can hover on to view the string

prefix and suffix patterns within the cell values. Meanwhile, users

can double click on a field cell to expand and view the subfields

(Figure 2 (A4)). The subfield cells are embedded with icons or text

that correspond to each component of the field’s regular expression

representation. Specifically, represents a digit, represents a

letter, represents an arbitrary character, denotes one of several

optional elements, and plain text refers to fixed strings. Textual

annotations are also provided for special formats like CSV, JSON,

and URL. The superscript at the top right of the cell indicates the

number of repeats for the element in the cell, which can be either

a numerical value or a icon to indicate that the element will be

repeated an arbitrary number of times.

Algorithm 3 The layout algorithm for the tabular view

Input : an array of the cells in the tabular view 𝑐𝑒𝑙𝑙𝑠

Output : the updated cells 𝑐𝑒𝑙𝑙𝑠 with calculated height ℎ𝑒𝑖𝑔ℎ𝑡

1: for each cell.

2: procedure ParseData(𝑐𝑒𝑙𝑙𝑠)
3: 𝑟𝑜𝑤𝐼𝑛𝑑𝑒𝑥𝐹𝑜𝑟𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛 ← {}
4: for each 𝑐𝑒𝑙𝑙 ∈ 𝑐𝑒𝑙𝑙𝑠 do
5: insert(𝑟𝑜𝑤𝐼𝑛𝑑𝑒𝑥𝐹𝑜𝑟𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛, 𝑐𝑒𝑙𝑙 .𝑓 𝑖𝑟𝑠𝑡𝑅𝑜𝑤𝐼𝑛𝑑𝑒𝑥 )

6: insert(𝑟𝑜𝑤𝐼𝑛𝑑𝑒𝑥𝐹𝑜𝑟𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛, 𝑐𝑒𝑙𝑙 .𝑙𝑎𝑠𝑡𝑅𝑜𝑤𝐼𝑛𝑑𝑒𝑥 )

7: end for
8: for each 𝑐𝑒𝑙𝑙 ∈ 𝑐𝑒𝑙𝑙𝑠 do
9: 𝑠𝑢𝑏𝐶𝑒𝑙𝑙𝑠 ← divide(𝑐𝑒𝑙𝑙 , 𝑟𝑜𝑤𝐼𝑛𝑑𝑒𝑥𝐹𝑜𝑟𝐷𝑖𝑣𝑖𝑠𝑖𝑜𝑛)

10: 𝑐𝑒𝑙𝑙𝐻𝑒𝑖𝑔ℎ𝑡 ← 0

11: for each 𝑠𝑢𝑏𝐶𝑒𝑙𝑙 ∈ 𝑠𝑢𝑏𝐶𝑒𝑙𝑙𝑠 do
12: 𝑠𝑢𝑏𝐶𝑒𝑙𝑙𝑆𝑖𝑧𝑒 ← 𝑠𝑢𝑏𝐶𝑒𝑙𝑙 .𝑙𝑎𝑠𝑡𝑅𝑜𝑤𝐼𝑛𝑑𝑒𝑥 −

𝑠𝑢𝑏𝐶𝑒𝑙𝑙 .𝑓 𝑖𝑟𝑠𝑡𝑅𝑜𝑤𝐼𝑛𝑑𝑒𝑥

13: 𝑐𝑒𝑙𝑙𝐻𝑒𝑖𝑔ℎ𝑡 ← 𝑐𝑒𝑙𝑙𝐻𝑒𝑖𝑔ℎ𝑡 + 𝑙𝑜𝑔(𝑠𝑢𝑏𝐶𝑒𝑙𝑙𝑆𝑖𝑧𝑒) ∗ 𝑐 ⊲ c
is a constant determined by the screen size

14: end for
15: end for
16: return 𝑐𝑒𝑙𝑙𝑠

17: end procedure

Note that one of the major drawbacks of using tabular layouts

for text alignment is the lack of scalability [73], as the height of

individual cells can become excessively large when dealing with

large datasets. To address this issue, we not only support zoom-

in/out interactions to scale the view but also propose a novel layout

algorithm whose main idea is dividing the merged cells into smaller

units based on their positions. Each of these smaller cells is assigned

a height proportional to the logarithmic value of the number of cells

merged. We also set a minimum cell height to prevent small cells

from becoming invisible. The height of the cell is determined by

the combined height of its divided cells. This method ensures that

the overall cell height grows approximately logarithmically with

the data size to accommodate the limited screen space while also

preserving the table structure. Algorithm 3 shows the pseudo-code.

The algorithm first iterates over the cells and records the starting

and ending row indices for each cell (lines 2-6). In a subsequent

iteration, it divides each cell into subcells using these indices (lines

7-8). Each subcell is assigned a height logarithmically proportional

to its size, and the overall cell height is calculated by aggregating

all subcell heights (lines 9-13).

Design alternatives. In our initial design, we chose to build

a parallel coordinate diagram for relationship patterns between

fields and embedded it in the tabular view. However, the edges

caused severe visual clusters. We then switched to a chord diagram,

but later some users suggested that the heatmap is more intuitive

and helpful in revealing patterns. In addition, there were several

alternatives for the tabular structure view, such as sankey diagrams

or storyline-based text variant graphs [62]. It turned out that the

sankey diagram excels in visualizing a network structure within

records and fields, while the tabular layout has its advantages in easy

navigation and manipulation of the data. We eventually decided to

combine these two options by augmenting the tabular layout with



Yanwei Huang, Yan Miao, Di Weng, Adam Perer, and Yingcai Wu

edges between cells to facilitate graphical navigation. Users found

the result layout to be intuitive and insightful, enabling them to

perform data analysis and transformation tasks more efficiently.

5.2.3 Wrangler view. The wrangler view is designed for users to

construct structured tables from the raw dataset for further tasks

(DG5). Columns can be added by dragging cells from the tabular

view into the table. Users can freely edit the table contents as needed.

Additionally, they can click on individual cells (Figure 2 (C1)) to

locate the corresponding records in the data view (DG3).

5.3 Interactive wrangling
In addition to the visual profiles, users can directly interact on

the profiling results for data transformations (DG4). This feature

allows users to experiment with the data immediately after gaining

insights to promote a seamless workflow. Specifically, to cover the

wrangling operations in Section 3.2, StructVizor supports three

classes of interactions: visualization-based filter, cell configuration

menu, and drag-and-drop.

Visualization-based filter. StructVizor leverages bar charts and
histograms to profile the value distributions of fields and subfields

(Figure 2 (A3)). These visualizations enable users to apply filters

directly based on the displayed data. By clicking on the chart within

cells, users can select specific values to be filtered. The filtered

records will be highlighted in both the data view and the histograms

above the columns in the structure view as previews. Users can

then click the “Apply” button to apply the filter (Figure 2 (A5)).

Cell configuration menu. Users can right-click on a cell in the

structure view and access the consequent menu (Figure 2 (A6)) to

perform various operations. Informed by DG4 and the transfoma-

tion operations in Section 3.2, StructVizor supports the following

operators:

• Add. Select one or more cells to add custom fields or sub-

fields before or after them. The new content can be specified

using fixed strings or derived from the selected cell values.

Users can also append empty records around the selected

cells.

• Delete. Delete selected cells, the records associated with

them, or entire record clusters.

• Replace. Transform the values of selected cells by applying

operations such as substring extraction, replacement, and

regular expression matching.

• Separate. Split a cell into two by selecting values to place in

a new cell, causing the corresponding cells in other columns

to reposition accordingly.

• Combine. Aggregate values of selected cells, replacing the

original values or placing the results in a new record.

• Schema. Modify the schema of subfield cells by editing the

regular-expression-based pattern.

Drag-and-drop. Drag-and-drop interactions provide an intu-

itive way to perform operations that involve reordering or reposi-

tioning items. For instance, users can easily reposition the records,

fields, or subfields by simply dragging and dropping them. Further-

more, StructVizor allows users to construct relational tables in the

wrangler view (DG5). By dragging a cell from the structure view

to the table in the wrangler view, users can append the values of

the corresponding field as a new column. If multiple columns are

present in the table, they will automatically be joined based on the

raw dataset.

In addition, one interesting usage of drag-and-drop is to decom-

pose complex sub-structures. In practice, data records often include

fields with sub-structures, such as comma-separated items, where

multiple instances are consolidated within a single record and thus

impede analysis. In such cases, users can drag the cell of one in-

stance to the bottom edge of another, thereby mapping the original

record into multiple records, with each instance replacing the field

value in a separate record. A concrete example has been given in

Figure 3 (C), where the author list are mapped to multiple individual

records. This operation resembles the “fold” operation commonly

used in tabular data wrangling and enables users to effectively dis-

entangle and analyze sub-structures within the data. Note that after

each drag-and-drop interaction, a preview dialog window will pop

up, displaying the changes from the current transformation (with

red text indicating deletions and green text indicating additions).

Besides, it is worth noting that after applying a wrangling oper-

ation to the raw dataset, both the data view and the structure view

will be updated to ensure the consistency between the profiling

results and data (DG3). StructVizor also allows users to undo or

redo operations by clicking on the buttons at the interface header.

5.4 Implementation
StructVizor was developed following the client-server framework.

The frontend interface was developed as a web application using

JavaScript and the Vue framework. Additionally, it integrated a back-

end responsible for processing the input dataset for profiles. The

backend was implemented in Python, leveraging Flask for the web

server and several third-party libraries such as Scikit-learn, PROSE,

and Regex, along with GPT-4o for data manipulation. Specifically,

GPT-4o is used for data sampling and parsing, while the libraries

are used for structural pattern analysis.

6 TECHNICAL EVALUATION
To evaluate the performance of StructVizor’s data preprocessing

pipeline, we conducted a technical assessment using a substantial

set of semi-structured datasets. To the best of our knowledge, we

haven’t found any open-source benchmark datasets for parsing

general semi-structured data except PADS
1
, which was used in

previous studies [30, 34] but contains only 15 files, mostly log files.

To thoroughly test StructVizor’s performance across diverse data

types, we followed the methodology of UnRavel [34] and created

a new benchmark by gathering 100 open-source semi-structured

textual files
2
. Of these, 85 were sourced from GitHub using key-

words like “DB”, “txt”, and “xml”, while the remaining 15 files were

drawn from the PADS dataset. The file sizes varied from 5KB to

312KB, with 67 files consisting of ad-hoc, non-standardized semi-

structured textual data where records can span one or multiple

lines. The other 33 files included common semi-structured formats

such as JSON, CSV, and XML, along with specialized formats like

HMM and FASTQ frequently used in the medical field. For each

dataset, we conducted quintuplicate tests to measure the execution

time of the preprocessing algorithm, ensuring that the sample data

1
http://www.padsproj.org/learning.html

2
https://github.com/Amur-N/Semi-structured-Dataset-Collection



StructVizor: Interactive Profiling of Semi-Structured Textual Data

extracted by GPT-4o was identical for each test. All tests were per-

formed on a 12th Generation Intel(R) Core(TM) i5-1235U processor

with a base clock speed of 1.30 GHz and 16 GB of RAM. After com-

pleting the tests on all datasets, we quantified the average runtime

of the preprocessing algorithms and analyzed their correlation with

factors such as dataset size, the number of distinct patterns, and the

average number of parsed fields per record after preprocessing. In

the following discussion we will highlight our main findings, and

we refer readers to the Appendix for detailed analysis results.

6.1 Performance
6.1.1 Time. Figure 5 (A) shows StructVizor’s average running

time with respect to the dataset size. Overall, the running time

is higher than the reported3 performance of UnRavel [34] and Data-

Maran [31], which process datasets with several structural assump-

tions. We argue that this is reasonable as StructVizor’s processing

pipeline is not restricted by structural assumptions, thus requiring a

larger search space. On the other hand, Figure 5 (B) illustrates the re-

lationship between the running time and the structural complexity

of the dataset, which is characterized by multiplying the normalized

value of the the average record length, the number of fields with

different structures, and the dataset size. We therefore conclude that

the structural complexity of a dataset may significantly influence

the processing time.

6.1.2 Accuracy. Additionally, we evaluated the accuracy of the

aligned table. Since a dataset can be parsed in a number of ways,

an absolute “ground-truth” does not exist. Therefore, following

prior works [34], we categorized all datasets by format into Log-like
files, Fixed-width files, Key-value files, CSV-like files and Miscella-
neous files. We selected five datasets from each category for manual

verification of the accuracy of the parsed records and fields. Over-

all, StructVizor successfully parsed most records for Log-like files
(93.45%), Fixed-width files (81.48%), Key-value files (79.82%), and
CSV-like files (94.97%). The overall accuracy for Miscellaneous files
is 53.63%, in which the structural patterns are more random and

complicated. By analyzing the errors, we identified two primary

factors contributing to these issues: the use of the GPT-4o model

and the quality of the sample dataset.

6.2 Discussion on failures cases
6.2.1 Failures from GPT-4o. We noted several errors stemming

from GPT-4o’s difficulty in accurately identifying record and field

boundaries.

(a) Record boundaries: Distinguishing between records requires

consideration of both semantic differences and repetitive patterns

in adjacent records. GPT-4o may struggle when a clear semantic

boundary is absent. For example, in the file shown in Figure 6 (A),

unlike typical files that start each record with an index or ID, this

file lacks strong indicators of record beginnings, making each field

appear as if it could be the start of a new record. Consequently,

records parsed by GPT-4o may have a positional shift from the

ground truth. Additionally, when parsing a section of the file, GPT-

4o lacks awareness of the broader context, and the specific part that

could provide this context is unknown, leading to these failures.

3
A more formal comparison is infeasible since the tools are not fully open-sourced.

Furthermore, GPT-4o may become overly focused on repetitive

patterns, leading to oversplitting of records, as illustrated in Figure 6

(B). The presence of similar key-value patterns in each record may

cause GPT-4o to treat each line as a separate record.

(b) Field boundaries: Contrary to record parsing that requires a

broader context, field identification mainly depends on subtle local

semantic differences, and parsing failures typically occur in files

where fields contain lengthy natural language content or consist

of many symbolic strings. In these scenarios, GPT-4o may struggle

to decide between syntactic and semantic boundaries, resulting in

incorrect splits. For instance, in Figure 6 (C), the presence of numer-

ous brackets complicates the identification of semantic boundaries,

causing GPT-4o to split the record by spaces. This leads to semantic

fields being fragmented and paired brackets being separated into

different fields.

6.2.2 Failures from the sample dataset. We have also observed that

the sample quality may influence the accuracy of the parsing results.

Generally, the more comprehensive and representative the sample

is, the fewer unmatched strings will be in the parsing results. Our

approach may fall short in files that contain lengthy records or a

diverse range of patterns, where including sufficient representative

records in the sample becomes difficult.

7 USER STUDY
To demonstrate the usability and effectiveness of StructVizor, we

conducted an empirical user study with the primary goal to answer

the following research questions:

• RQ1:Can usersmake sense of the data profiles from StructVi-

zor and derive valuable insights?

• RQ2: Can users use StructVizor’s interactions to do profile-

based data wrangling?

• RQ3: How do users perceive and apply the data profiles in

explorative data analysis?

To address RQ1 and RQ2, we compared StructVizor with Wran-

gler [44] on a data wrangling task. We further address RQ1 and RQ3

by asking participants to work on an open-ended explorative task

using StructVizor. The study design was approved by the ethics

committee of our organization.

Justification of baseline selection. We choose Wrangler as

the baseline because it is a representative data wrangling inter-

face that supports diverse data transformations and meanwhile

provides some basic profiling features (e.g., bar charts based on

data quality metrics). To the best of our knowledge, there are no

existing prototypes or product visual interfaces specifically tailored

for general semi-structured textual data. Although Wrangler pri-

marily focuses on tabular data, it offers a range of data wrangling

operators akin to those in Pandas, which are commonly used by

data analysts today. These operators are capable of handling semi-

structured textual data to some extent (e.g., one can parse a dataset

using functions like split, cut, and extract), representing some of the

most prevalent methods for processing such data according to our

experience. While modern commercial tools like Trifacta [66] and

OpenRefine [58] are also valid options, they come with a plethora

of detailed features that are hard to master within limited time

(especially for first-time users), and they impose specific require-

ments on the running environment. Therefore, we chose a research



Yanwei Huang, Yan Miao, Di Weng, Adam Perer, and Yingcai Wu

Figure 5: Average running time of StructVizor’s data processing pipeline with respect to the dataset size and complexity.

Figure 6: Failure cases of GPT-4o in data parsing.

prototype as our baseline, leaving a comparison with commercial

tools for future work.

7.1 Study Design
7.1.1 Participants. We recruited 12 participants (P1-P12, 7 males

and 5 females, aged 22-32) from a local university, including 2 un-

dergraduates, 1 master, and 9 Ph.D. students. Participants reported a

high level of experience in data analysis (M=3.83/5, SD=0.83). Three

participants indicated they worked with complex semi-structured

or unstructured data daily, another three weekly, and six monthly.

All participants had experience writing code using open-source

libraries such as Pandas. Additionally, seven had used professional

systems like Tableau, Trifacta, and SPSS, while nine had experience

with AI tools like ChatGPT for analyzing textual data.

7.1.2 Task. The datawrangling taskwas based on a semi-structured

IMDB dataset consisting of 102 records, with records containing a

maximum of 12 fields. We limited the dataset size because Wrangler

displays data tables with pagination (25 records per page), making

it cumbersome for users to navigate larger tables. We chose a file

with explicit delimiters (semicolons and whitespaces) to simplify

the record and field parsing process. This decision allows us to

avoid the complexities of handling implicit delimiters [22], which
are poorly supported by existing tools and would have added un-

necessary difficulty to our already complex subsequent subtasks.

However, parsing using these explicit delimiters may still lead to

issues such as insufficient splitting, making the data unready for

analysis and requiring users to manually divide certain fields for

further processing. Meanwhile, such a file differs from typical struc-

tured data, where records are similarly composed and regularly

organized, as the parsed dataset included three major classes of data

records with distinct components arranged randomly. Additionally,

the records presented several quality issues, such as inconsistent val-

ues and noise, which introduced an appropriate level of structural

diversity. Participants were instructed to complete a data cleaning

task consisting of the following steps: a) remove contextual and

problematic records and fields, specifically headers, blank entries,

and those containing noise; b) standardize dates of varying for-

mats; and c) split and restructure values from a field containing

comma-delimited data through folding. We ensured these three

subtasks were manageable for both systems and encompassed all

major categories of text wrangling operations in Section 3.2.

In the open-ended explorative task, we used a 127KB log file

from Kubernetes, which includes 450 records with their lengths

ranging between 63 and 975 characters (approximately 22 first-

level fields in the final parsing results of StructVizor). Records of

this file can be broadly classified into four classes: information

logs, error logs, warning logs, and noises. However, there are still

significant structural differences within each class. Figure 7 shows

the length distribution of the records in each class. Meanwhile, we

made sure that there existed interesting positional patterns (e.g.,

noise records mainly lie in the initial part of the dataset) and field-

wise relationship patterns (e.g., recurring strings in different fields),

ensuring a diverse pattern space for exploration.

7.1.3 Procedure. The study started with a demographic survey.

Afterwards, participants were asked to finish the task with both

StructVizor and Wrangler. To mitigate potential learning effects,

we shuffled the order in which participants interacted with the

two systems. Before using each system, participants were provided

with a 10-minute tutorial, followed by a 5-minute trial period to get

themselves familiar with the system. They then worked on the task

within a time limit of 15 minutes. Since both systems contained a



StructVizor: Interactive Profiling of Semi-Structured Textual Data

Figure 7: Length distribution of records in the Kubernetes
log dataset, categorized by record type.

non-trivial number of functionalities, they were allowed to refer

to a manual prepared by us at any time during the study, which

included explanations of all detailed interactions of both systems.

Upon completion they were asked to finish two questionnaires (𝑄𝑎

and 𝑄𝑏 ) assessing their experience with the two systems. After

a 1-minute break, they were given 10 minutes to freely explore

the log file using StructVizor, during which they were asked to

follow the think-aloud protocol. The study concluded with another

questionnaire (𝑄𝑐 ) and one follow-up interview. The total duration

of the study varied between 65 and 80 minutes, and the entire

process was video recorded. Participants received a compensation

of $10 after the study.

7.1.4 Measure. We measured the task completion time for each

system during the study. Besides, both questionnaires𝑄𝑎 and𝑄𝑏 in-

cluded six NASA-TLX [37] questions. To answer the three research

questions,𝑄𝑐 comprised of three questions assessing StructVizor in

terms of (a) the comprehensibility of visual profiles, (b) the usability

of the interactions, and (c) the helpfulness of profiles for explorative

analysis. All questions were measured using 7-point Likert Scales.

7.2 Quantitative Results
7.2.1 Task completion number and time. All participants success-
fully completed the task using both systems within the 15-minute

time limit. Figure 8 (A) illustrates participants’ time cost. On average,

participants took less time when using StructVizor (8 minutes and

36 seconds) than Wrangler (9 minutes and 32 seconds). However,

the difference was not statistically significant (𝑇 (11) = −1.461, 𝑝 =

0.086, paired student’s t-test).

7.2.2 Workload. Figure 8 (B) shows participants’ self-reported rat-

ings on their perceived workload. Overall, users reported a lower

workload across all six NASA-TLX dimensions, with significant

differences (𝑝 < 0.05) observed in all dimensions except for Mental,
which showed no statistical significance (𝑝 = 0.60) in the Wilcoxon

signed-rank test. Participants noted in post-study interviews that

some found Wrangler’s data transformations comparable to those

in Pandas and thus more familiar to them, making mental workload

lower when using Wrangler compared to StructVizor.

7.2.3 Effectiveness and usability. In general, participants believed

StructVizor’s visual profiles easy to understand (M=5.75/7, SD=1.06)

Figure 8: Task completion time (in seconds) and perceived
workload of participants for StructVizor (S) and Wrangler
(W) on the data wrangling task.

and the interactions easy to use (M=6.08/7, SD=0.51). Moreover,

all of them agreed that the visual profiles could facilitate their

explorative data analysis (M=6.08/7, SD=0.67).

7.3 Qualitative Feedback
7.3.1 Data profiling. In general, participants were positive about

StructVizor’s visual profiles. We summarize our major findings as

follows.

StructVizor promotes data onboarding and analysis plan-
ning.Most participants (10/12) felt that StructVizor facilitates in-

sights by providing a clear onboarding of the whole dataset, allow-

ing them to identify interesting patterns and fields at an earlier

time and better plan their analysis. The tabular overview combined

with record clustering was believed to highlight records with vary-

ing structures, particularly making those containing issues salient.

The heatmap was also recognized as a significant factor, as P10

remarked, “Strongly connected fields in the heatmap often indicate re-
dundancy, which helps me filter out less interesting fields. By contrast,
participants felt a lack of table-level profiles apart from column-

level ones inWrangler, leading to five of them feeling “overwhelmed”
(P10) by the number of rows and columns and spending more time

locating the target data before starting the given tasks.

StructVizor’s expressive profiles facilitates data sensemak-
ing and validation. All participants believed that StructVizor’s

profiles are more expressive than Wrangler, advancing from single

data types (e.g., numbers, strings, and null values) to data compo-

sition and high-level patterns. For instance, P5 believed that the

visual profiles enhanced data validation, sharing an example where

Wrangler mistakenly reported the column consistency because it

struggled to distinguish between the regular pattern “tt\d{7}” of
IMDB ID and the noise value “abcdefghj”. However, he could easily

check the pattern by double clicking on the corresponding node

in StructVizor. P2 and P9 similarly complaint about the frequent

unexpected results after transformations and going over the whole

table to examine the results in Wrangler.

StructVizor improves the efficiency of insight seeking.
Most participants believed that unlike Wrangler, which highlights

noteworthy values in a selected column, StructVizor’s visual rep-

resentation of cell blocks merges similar cells of interest (7/12)

and encourages them to compare across columns for more insights



Yanwei Huang, Yan Miao, Di Weng, Adam Perer, and Yingcai Wu

(3/12). Upon noticing interesting cell blocks or empty sections in the

tabular view, users can easily locate the broad context (i.e., records

with or without the block) by looking around, helping them finding

the reason of issues and efficiently leading to insights.

Top-down and bottom-up analysis are complementary and
preferred by different users. Half of the participants (6/12) per-
ceived their data analysis in StructVizor as more systematic, as

they can overview the structural patterns through visual profiles,

and then navigate to data details in the data view. They felt that

such a top-down style of analysis was more “natural” (P3, P8) and
“structured” (P1). However, two participants noted that Wrangler’s

explicit data table enables them to spot subtle differences that might

be overlooked in StructVizor, potentially leading to serendipitous

findings. For instance, P6 mentioned that “the data table itself is a
profile”, as he browsed the data table in Wrangler and compared

adjacent cells by chance for insights. He then moved on to find

cells with similar patterns. In StructVizor, getting such detailed in-

sights requires more effort, as users must delve into the hierarchical

overview to access field-level or subfield-level information, which

is not readily visible at the top layer.

Users expect profiles to seamlessly integrate with data
details. As data analysis is often iterative, users frequently need

to navigate between high-level patterns and detailed data. While

StructVizor facilitates this process through view coordination, P10

noted that this coordination can be cumbersome due to the frequent

need to switch between views. She explained, “Switchings between
the structure view and the data view happen all the time. I hope they
are one view if possible.” Furthermore, as one of the most unex-

pected findings, two participants thought such coordination might

cause some cognitive confusion due to the alignment algorithm.

P7 illustrated this issue with an example, explaining that the first

field of a record, after alignment, might appear in the sixth column

of the tabular view instead of the first, contrasting his traditional

table-based thinking.

7.3.2 Data wrangling. Participants generally expressed a prefer-

ence for StructVizor’s wrangling interactions over those in Wran-

gler. Five of them attributed this preference to the lower expertise

required for StructVizor’s interactions compared toWrangler’s data

transformation operators. Three participants noted that StructVizor

allows for data transformation in the same context where insights

are gained, supporting more seamless exploratory analysis.

Profile-based interactions are more user-friendly than for-
mal operators. One of the most frequently mentioned drawbacks

of Wrangler was the difficulty in breaking down tasks into a series

of operators. These operators were thus perceived as less straight-

forward than StructVizor’s interactions, as the latter resolve tasks in

fewer steps. This was particularly evident in the subtask of splitting

and folding a comma-delimited field, where many users struggled

to organize their thoughts when using Wrangler. We have summa-

rized three reasons. First, Wrangler requires users to split fields into

manageable units, adding an unnecessary “preprocessing” step (P12),
while StructVizor simplifies this with a double-click interaction.

Second, Wrangler’s “fold/unfold” function is a multi-column opera-

tor that users find confusing due to “abrupt changes” (P2) in table

structure. In contrast, StructVizor’s drag-and-drop approach offers

a more intuitive, “progressive” (P2) solution. Third, StructVizor’s

interactions are based on cell blocks rather than rows or columns,

which users found more flexible. This design allows for quick data

grouping for different operations right from the start. In Wrangler,

users typically apply global changes first and then refine specific

problematic values.

7.3.3 Directions for improvement. Five participants expressed their
desire to see a recommendation view in StructVizor, which, how-

ever, was a fundamental feature of Wrangler. They hoped insights

could be automatically generated to further enhance the efficiency

of the insight-seeking process. Meanwhile, participants had mixed

opinions regarding the learning curve of StructVizor. Four found

it easy to learn, while five were neutral; they initially felt over-

whelmed by the number of functionalities but later discovered that

most were intuitive. Three participants preferred Wrangler, as they

found its workflow more natural given their experience with Pan-

das and spreadsheet tools. We aim to improve the onboarding and

real-time guidance for users in the future.

8 DISCUSSION
8.1 Implications
8.1.1 Implications for managing semi-structured textual data. From
our design process we learned several important lessons that may

implicate semi-structured data analysis.

Boundaries of data type classification. In the data science

literature, data has long been classified as structured data, semi-
structured data, and unstructured data. However, the definitions of
these terms are hardly precise, and it is even more challenging to

distinguish between them – as shown in our paper, structures can be

nested, and even structured or semi-structured formats may contain

a large proportion of unstructured text. Although the ambiguity

of these terms’ boundaries has been identified as early as 1997 [8],

few theories have been proposed for clarification since then, par-

ticularly due to the difficulty in modeling data that are diverse,

heterogeneous, and unpredictable by nature. Recently, researchers

have proposed several algorithms to parse or model semi-structured

data, though built upon specific structural assumptions [22, 31, 34].

Our paper extends prior works by proposing a pipeline of data

parsing and pattern mining for general semi-structured data, while

enriching existing literature by summarizing a space of strctural

patterns and wrangling operations.

Profiling semi-structured data. Throughout the design pro-

cess, one of the most significant lessons we learned is that profiles

should be tailored based on downstream analysis tasks and specific

user needs. For instance, treating an author list field in the citation

dataset as a whole works well when reformatting citations, while

it is better to dive into the substructure for detailed author analy-

sis. In our approach we propose a hierarchical model of data that

include records, fields, and subfields, where the first two levels are

precalculated and the others are calculated only when specified by

users. Overall, such a design ensures the profiles to be dynamic

and flexible, successfully helping participants in data sensemaking

and fine-grained text wrangling. However, it remains unclear what

kinds of structural patterns useful for different users and tasks,

making customized recommendations challenging. For instance,

we found that only P10, an analyst who dealed with social media



StructVizor: Interactive Profiling of Semi-Structured Textual Data

data everyday, checked the string prefix/suffix patterns in her anal-

ysis because she often checked them in her daily work. Similarly,

few participants checked the area chart in the tabular view, and

some explained that this design was irrelevant to their intended

analysis tasks but might be potentially useful in other scenarios.

We anticipate that large-scale empirical studies of real-world text

analysts’ practices will yield valuable insights.

Measuring data structureness. Given the ambiguity of data

type terms, we envision a quantitative measure of the data struc-

tureness as one of the promising future directions. With the help of

structural template representations, one can come up with diverse

metrics for data consistency and variance. This is especially helpful

to give users an initial impression of the difficulty in data analysis,

given that in practice many non-professional users often give up

their analysis of complex data according to our user study. Addition-

ally, our approach can be further enhanced with semantic regular
expressions [17] for better expressiveness in small- or medium-sized

datasets, where semantic metrics will also be helpful.

8.1.2 Combining data profiles and visual analytics facilitates sense-
making of data. StructVizor incorporates various visualizations to
reveal the mined structural patterns. It extends prior visual profiling

interfaces in both objective and dimension [45, 55]: it promotes the

profiling objective from individual columns (fields) to the entire

dataset, and expands the profiling dimension from basic data facts

(e.g., quality, type, size) to a more diverse space (e.g., composition,

nested structure, data dependency), as introduced in Section 3.1. As

a result, participants found such visual profiles intuitive and more

comprehensive than those in Wrangler.

Among the views, the tabular view is appreciated by most users,

as it provides an intuitive overview of data patterns not present

in Wrangler, as well as offering a structural approach for data

analysis. However, some participants noted that this approach may

hinder serendipitous insights through comparing data details. We

therefore argue that in visual data analysis, both high-level visual

abstractions and concrete instances can be sources of insights and

are thus equally essential for users. Additionally, while our data

view displays data details, users felt that it could be improved, partly

because users prefer an intuitive data table to a plain text view

under the influence of spreadsheet or data frame-based tools. This

disconnect from traditional workflows may impose an extra mental

workload on users, as reflected in a recent study [39]. Moreover, we

confirm that users need always-on support for both data profiles

and details, supporting prior research findings [29]. While we use

view coordinations to connect them, this design might be hard to

afford highly frequent switchings between profiles and details, and

one potential solution is to merge these views as one view.

8.1.3 Data profiles as a novel data wrangling paradigm. Program-
ming by demonstration (PBD), which uses command-like operators

to execute tasks as adopted in Wrangler, is still one of the most pop-

ular data wrangling paradigms. While PBD is formal and unambigu-

ous, its drawbacks include the requirement for users to understand

diverse operators that demands high user expertise [19, 40], and

the need to decompose tasks into long operator sequences [19, 42].

In response, a recent trend, which we term programming by
metaphor (PBM), has emerged, using intuitive visual metaphors

for semantic scope selection and mapping native interactions like

drag-and-drops to programming operators, as demonstrated in Ta-

ble Illustrator [39]. Our study follows this trend, demonstrating the

opportunities of data profiles on in-situ data wrangling for semi-

structured data. Specifically, StructVizor incorporates three classes

of interactions in its core tabular view, introducing a new interac-

tion paradigm with cell blocks as the core interaction unit, which

are fundamentally a small collection of values with the same con-

text or pattern. This visual approach not only facilitates efficient

fine-grained edits, which are prevalent in semi-structured data,

but also simplifies complex transformations, such as separation,

fine-grained schema modifications, and field switching and fold-

ing, through intuitive drag-and-drop interactions. Our user study

supports previous findings, highlighting the benefits of combining

natural visual hints with visual programming, leading to lower

cognitive workload. In the future, we envision a more rigorous for-

mulation of PBM approaches as well as systematic empirical eval-

uations of them in various domains. Moreover, as recent research

use programming by example approaches [42, 52] or generative

code agents [33] to synthesize code, future work can explore similar

support for PBM, recommending visual interaction sequences.

8.2 Limitations and future work
First, the current profiling pipeline of StructVizor primarily empha-

sizes common syntactic patterns and transformations. Future work

could explore the integration of external knowledge to identify

domain-specific patterns and allow users to customize complex

patterns. Additionally, incorporating visualizations for text seman-

tics, such as topic mining and discourse analysis [23, 51, 75], could

deepen users’ understanding of the data and facilitate more ad-

vanced transformations and analyses.

Second, our current evaluations of StructVizor have some lim-

itations. Since StructVizor is mainly designed for profiling semi-

structured data and the interface consists of numerous features, the

user study is mainly intended to evaluate the effectiveness of the

visual profile design and interactions while touching little on the

data processing, and we leave it for future work. While we have

technically evaluated data processing, it is hard to systematically

evaluate GPT-4o and quantitatively measure the influence of factors

such as sample quality and structural complexity on the system

performance, due to the large space of data and samples. We believe

our approach can benefit from future research on evaluating large

language models and better benchmarks of semi-structured data.

Furthermore, StructVizor’s data processing pipeline can be im-

proved in many ways. First, as an initial attempt to address the

semi-structured data parsing problem without structural assump-

tions, we envision future work to improve the performance of our

algorithms. We suggest that practitioners could divide the entire

dataset into smaller batches and leverage parallel computing for

more efficient processing. Accordingly, tailored interfaces should be

proposed to support interactions for data batches, and we leave this

for future work due to the substantial research effort required in the

process. Second, it incorporates a large language model, GPT-4o,

in several steps, and the model is well known for its risks such as

security and privacy. In StructVizor, the model is only used on the

sample set rather than the entire raw data, and we encourage users

to remove or replace sensitive data when editing the sample set to



Yanwei Huang, Yan Miao, Di Weng, Adam Perer, and Yingcai Wu

avoid privacy or security concerns. Future work may focus on de-

veloping more robust privacy-preserving techniques or improving

data anonymization methods to ensure user data remains secure.

Third, we currently handle potential errors of the data processing

pipeline by allowing user edits and rerunning relevant steps, which

might lead to significant changes to the results if the user edits are

substantial. We plan to improve this approach by deducing intents

from user edits for intelligent refinement of the parsing results.

9 CONCLUSION
We present StructVizor, an interactive visual profiling system for

semi-structured textual data. The system incorporates a data pro-

cessing pipeline that parses input datasets and extracts structural

patterns. The profiling results are then visualized within an interac-

tive interface, allowing users to explore patterns and gain insights

into the data. StructVizor also leverages the generated profiles to

enable interactive in-situ textual data wrangling, facilitating a wide

range of data transformations. A user study on 12 participants com-

paring StructVizor with Wrangler showed that most participants

completed the data wrangling tasks more quickly using StructVizor.

Additionally, all participants reported significantly lower workload

levels with StructVizor except for the mental workload dimension.

The study also demonstrated that StructVizor’s intuitive data pro-

files and interactions for profile-based data wrangling contributed

to users’ explorative data analysis process. We expect StructVizor’s

approach to be applied to various scenarios such as log analysis,

text reformatting, data cleaning, and social media analytics.

ACKNOWLEDGMENTS
The work was supported by the National Key Research and Devel-

opment Program of China (2023YFB3107100) and NSFC (62402421).

REFERENCES
[1] 2024. Pandas, a Python data analysis and manipulation tool. https://pandas.

pydata.org. Accessed: August 20, 2024.

[2] 2024. Regex, a Python library for regular expression-relevant operations. https:

//pypi.org/project/regex/. Accessed: August 20, 2024.

[3] 2024. Regex-vis, a regular expression visualizer. https://github.com/Bowen7/

regex-vis/tree/master. Accessed: August 20, 2024.

[4] 2024. Regexper, a site for visualizing regular expressions. https://gitlab.com/

javallone/regexper-static. Accessed: August 20, 2024.

[5] Zahraa S. Abdallah, Lan Du, and Geoffrey I. Webb. 2017. Data Preparation.
Springer, 318–327. doi:10.1007/978-1-4899-7687-1_62

[6] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2015. Profiling relational

data: a survey. The VLDB Journal 24 (2015), 557–581. doi:10.1007/s00778-015-
0389-y

[7] Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock.

2022. Data profiling. Springer.
[8] Serge Abiteboul. 1997. Querying semi-structured data. In Database The-

ory—ICDT’97. Springer, 1–18.
[9] Natalia Andrienko, Gennady Andrienko, Georg Fuchs, Aidan Slingsby, Cagatay

Turkay, and Stefan Wrobel. 2020. Visual Analytics for Understanding Texts.
Springer, 341–359. doi:10.1007/978-3-030-56146-8_11

[10] Arvind Arasu and Hector Garcia-Molina. 2003. Extracting structured data from

web pages. In Proceedings of the ACM SIGMOD international conference on Man-
agement of data. 337–348.

[11] Hiroki Arimura, Hiroshi Sakamoto, and Setsuo Arikawa. 2002. Efficient data

mining from large text databases. Progress in Discovery Science (2002), 123–139.
[12] Ataccama. 2024. Ataccama One. https://www.ataccama.com/platform. Accessed:

August 20, 2024.

[13] Daniel W. Barowy, Sumit Gulwani, Ted Hart, and Benjamin Zorn. 2015. FlashRe-

late: extracting relational data from semi-structured spreadsheets using examples.

In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation. 218–228. doi:10.1145/2737924.2737952

[14] Mohamed Ben Ellefi, Zohra Bellahsene, John G Breslin, Elena Demidova, Stefan

Dietze, Julian Szymański, and Konstantin Todorov. 2018. RDF dataset profiling -

a survey of features, methods, vocabularies and applications. Semantic Web 9, 5
(2018), 677–705. doi:10.3233/SW-180294

[15] Geert Jan Bex, Frank Neven, and Stijn Vansummeren. 2007. Inferring XML

Schema Definitions from XMLData. In Proceedings of the International Conference
on Very Large Data Bases. ACM, 998–1009.

[16] Sergey Brin. 1999. Extracting Patterns and Relations from the World Wide Web.

In The World Wide Web and Databases. Springer, 172–183.
[17] Qiaochu Chen, Arko Banerjee, Çağatay Demiralp, Greg Durrett, and Işıl Dillig.

2023. Data Extraction via Semantic Regular Expression Synthesis. Proceedings of
the ACM on Programming Languages 7, OOPSLA2 (2023), 30 pages. doi:10.1145/
3622863

[18] Ran Chen, Xinhuan Shu, Jiahui Chen, Di Weng, Junxiu Tang, Siwei Fu, and

Yingcai Wu. 2022. Nebula: A Coordinating Grammar of Graphics. IEEE
Transactions on Visualization and Computer Graphics 28, 12 (2022), 4127–4140.
doi:10.1109/TVCG.2021.3076222

[19] Ran Chen, Di Weng, Yanwei Huang, Xinhuan Shu, Jiayi Zhou, Guodao Sun, and

Yingcai Wu. 2023. Rigel: Transforming Tabular Data by Declarative Mapping.

IEEE Transactions on Visualization and Computer Graphics 29, 1 (2023), 128–138.
doi:10.1109/TVCG.2022.3209385

[20] Zhijia Chen, Weiyi Meng, and Eduard Dragut. 2022. Web Record Extraction

with Invariants. Proceedings of the VLDB Endowment 16, 4 (2022), 959–972.

doi:10.14778/3574245.3574276

[21] Christina Christodoulakis, Eric B. Munson, Moshe Gabel, Angela Demke Brown,

and Renée J. Miller. 2020. Pytheas: pattern-based table discovery in CSV files.

Proceedings of the VLDB Endowment 13, 12 (Jul 2020), 2075–2089. doi:10.14778/
3407790.3407810

[22] Xu Chu, Yeye He, Kaushik Chakrabarti, and Kris Ganjam. 2015. TEGRA: Table

Extraction by Global Record Alignment. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. ACM, 1713–1728. doi:10.1145/

2723372.2723725

[23] Jason Chuang, Daniel Ramage, Christopher Manning, and Jeffrey Heer. 2012.

Interpretation and trust: designing model-driven visualizations for text analysis.

In Proceedings of the CHI Conference on Human Factors in Computing Systems.
ACM, 443–452. doi:10.1145/2207676.2207738

[24] Weiwei Cui, Shixia Liu, Li Tan, Conglei Shi, Yangqiu Song, Zekai Gao, Huamin

Qu, and Xin Tong. 2011. Textflow: Towards better understanding of evolving

topics in text. IEEE Transactions on Visualization and Computer Graphics 17, 12
(2011), 2412–2421. doi:10.1109/TVCG.2011.239

[25] Weiwei Cui, Yingcai Wu, Shixia Liu, Furu Wei, Michelle X Zhou, and Huamin

Qu. 2010. Context preserving dynamic word cloud visualization. In IEEE Pacific
Visualization Symposium. IEEE, 121–128. doi:10.1109/MCG.2010.102

[26] Till Döhmen, Hannes Mühleisen, and Peter Boncz. 2017. Multi-Hypothesis CSV

Parsing. In Proceedings of the International Conference on Scientific and Statistical
Database Management. ACM. doi:10.1145/3085504.3085520

[27] Robert C Edgar and Serafim Batzoglou. 2006. Multiple sequence alignment.

Current opinion in structural biology 16, 3 (2006), 368–373.

[28] Hazem Elmeleegy, Jayant Madhavan, and Alon Halevy. 2009. Harvesting Rela-

tional Tables from Lists on the Web. Proceedings of the VLDB Endowment 2, 1
(2009), 1078–1089. doi:10.14778/1687627.1687749

[29] Will Epperson, Vaishnavi Gorantla, Dominik Moritz, and Adam Perer. 2024.

Dead or Alive: Continuous Data Profiling for Interactive Data Science. IEEE
Transactions on Visualization and Computer Graphics 30, 1 (2024), 197–207. doi:10.
1109/TVCG.2023.3327367

[30] Kathleen Fisher, David Walker, Kenny Q. Zhu, and Peter White. 2008. From dirt

to shovels: fully automatic tool generation from ad hoc data. In Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM, 421–434. doi:10.1145/1328438.1328488

[31] Yihan Gao, Silu Huang, and Aditya G. Parameswaran. 2018. Navigating the Data

Lake with DATAMARAN: Automatically Extracting Structure from Log Datasets.

In Proceedings of the ACM SIGMOD international conference on Management of
data. ACM, 943–958. doi:10.1145/3183713.3183746

[32] Majid Ghasemi Gol, Jay Pujara, and Pedro Szekely. 2019. Tabular Cell Classifi-

cation Using Pre-Trained Cell Embeddings. In IEEE International Conference on
Data Mining. 230–239. doi:10.1109/ICDM.2019.00033

[33] GitHub, Inc. [n. d.]. GitHub Copilot. https://github.com/features/copilot. Ac-

cessed: November 13, 2024.

[34] Sumit Gulwani, Vu Le, Arjun Radhakrishna, Ivan Radiček, and Mohammad Raza.

2020. Structure Interpretation of Text Formats. Proceedings of the ACM on
Programming Languages 4, OOPSLA (2020). doi:10.1145/3428280

[35] R. Haentjens Dekker and G. Middell. 2011. Computer-supported collation with

CollateX: managing textual variance in an environment with varying require-

ments. In Supporting Digital Humanities 2011: Answering the unaskable.
[36] Yi Han, Gregory D. Abowd, and John Stasko. 2024. IntiVisor: A Visual Analytics

System for Interaction Log Analysis. IEEE Transactions on Visualization and
Computer Graphics (2024), 1–13. doi:10.1109/TVCG.2024.3370637

https://pandas.pydata.org
https://pandas.pydata.org
https://pypi.org/project/regex/
https://pypi.org/project/regex/
https://github.com/Bowen7/regex-vis/tree/master
https://github.com/Bowen7/regex-vis/tree/master
https://gitlab.com/javallone/regexper-static
https://gitlab.com/javallone/regexper-static
https://doi.org/10.1007/978-1-4899-7687-1_62
https://doi.org/10.1007/s00778-015-0389-y
https://doi.org/10.1007/s00778-015-0389-y
https://doi.org/10.1007/978-3-030-56146-8_11
https://www.ataccama.com/platform
https://doi.org/10.1145/2737924.2737952
https://doi.org/10.3233/SW-180294
https://doi.org/10.1145/3622863
https://doi.org/10.1145/3622863
https://doi.org/10.1109/TVCG.2021.3076222
https://doi.org/10.1109/TVCG.2022.3209385
https://doi.org/10.14778/3574245.3574276
https://doi.org/10.14778/3407790.3407810
https://doi.org/10.14778/3407790.3407810
https://doi.org/10.1145/2723372.2723725
https://doi.org/10.1145/2723372.2723725
https://doi.org/10.1145/2207676.2207738
https://doi.org/10.1109/TVCG.2011.239
https://doi.org/10.1109/MCG.2010.102
https://doi.org/10.1145/3085504.3085520
https://doi.org/10.14778/1687627.1687749
https://doi.org/10.1109/TVCG.2023.3327367
https://doi.org/10.1109/TVCG.2023.3327367
https://doi.org/10.1145/1328438.1328488
https://doi.org/10.1145/3183713.3183746
https://doi.org/10.1109/ICDM.2019.00033
https://github.com/features/copilot
https://doi.org/10.1145/3428280
https://doi.org/10.1109/TVCG.2024.3370637


StructVizor: Interactive Profiling of Semi-Structured Textual Data

[37] Sandra G. Hart and Lowell E. Staveland. 1988. Development of NASA-TLX

(Task Load Index): Results of empirical and theoretical research. In Advances in
psychology. Vol. 52. North-Holland, 139–183. doi:10.1016/S0166-4115(08)62386-9

[38] Florian Heimerl, Qi Han, Steffen Koch, and Thomas Ertl. 2016. CiteRivers: Visual

Analytics of Citation Patterns. IEEE Transactions on Visualization and Computer
Graphics 22, 1 (2016), 190–199. doi:10.1109/TVCG.2015.2467621

[39] Yanwei Huang, Yurun Yang, Xinhuan Shu, Ran Chen, Di Weng, and Yingcai

Wu. 2024. Table Illustrator: Puzzle-based interactive authoring of plain tables.

In Proceedings of the CHI Conference on Human Factors in Computing Systems.
doi:10.1145/3613904.3642415

[40] Yanwei Huang, Yunfan Zhou, Ran Chen, Changhao Pan, Xinhuan Shu, Di Weng,

and Yingcai Wu. 2024. Interactive Table Synthesis With Natural Language. IEEE
Transactions on Visualization and Computer Graphics 30, 9 (2024), 6130–6145.

doi:10.1109/TVCG.2023.3329120

[41] Ihab F. Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboulnaga. 2004.

CORDS: automatic discovery of correlations and soft functional dependencies.

In Proceedings of the ACM SIGMOD International Conference on Management of
Data. ACM, 647–658. doi:10.1145/1007568.1007641

[42] Zhongjun Jin, Michael R. Anderson, Michael Cafarella, and H. V. Jagadish. 2017.

Foofah: Transforming Data By Example. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. ACM, 683–698. doi:10.1145/

3035918.3064034

[43] Taeho Jo. 2019. Text Mining (1 ed.). Springer. doi:10.1007/978-3-319-91815-0

[44] Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer. 2011.

Wrangler: interactive visual specification of data transformation scripts. In Pro-
ceedings of the CHI Conference on Human Factors in Computing Systems. 3363–
3372. doi:10.1145/1978942.1979444

[45] Sean Kandel, Ravi Parikh, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey

Heer. 2012. Profiler: integrated statistical analysis and visualization for data

quality assessment. In Proceedings of the International Working Conference on
Advanced Visual Interfaces. ACM, 547–554. doi:10.1145/2254556.2254659

[46] Stephen Kasica, Charles Berret, and Tamara Munzner. 2021. Table Scraps: An

Actionable Framework for Multi-Table Data Wrangling From An Artifact Study

of Computational Journalism. IEEE Transactions on Visualization and Computer
Graphics 27, 2 (2021), 957–966. doi:10.1109/TVCG.2020.3030462

[47] Kyle Koh, Bongshin Lee, Bohyoung Kim, and Jinwook Seo. 2010. ManiWordle:

Providing Flexible Control over Wordle. IEEE Transactions on Visualization and
Computer Graphics 16, 6 (2010), 1190–1197. doi:10.1109/TVCG.2010.175

[48] Shahid Latif and Fabian Beck. 2019. VIS Author Profiles: Interactive Descriptions

of Publication Records Combining Text and Visualization. IEEE Transactions on
Visualization and Computer Graphics 25, 1 (2019), 152–161. doi:10.1109/TVCG.
2018.2865022

[49] Heejae Lee, Lu Zhang, Qi Liu, and Miklos Vasarhelyi. 2022. Text Visual Analysis

in Auditing: Data Analytics for Journal Entries Testing. International Journal
of Accounting Information Systems 46 (2022), 100571. doi:10.1016/j.accinf.2022.
100571

[50] Guozheng Li, Runfei Li, Zicheng Wang, Chi Harold Liu, Min Lu, and Guoren

Wang. 2023. HiTailor: Interactive Transformation and Visualization for Hierar-

chical Tabular Data. IEEE Transactions on Visualization and Computer Graphics
29, 1 (2023), 139–148. doi:10.1109/TVCG.2022.3209354

[51] Shixia Liu, Michelle X. Zhou, Shimei Pan, Yangqiu Song, Weihong Qian, Weijia

Cai, and Xiaoxiao Lian. 2012. TIARA: Interactive, Topic-Based Visual Text

Summarization and Analysis. ACM Transactions on Intelligent Systems and
Technology 3, 2 (Feb 2012). doi:10.1145/2089094.2089101

[52] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Olek-

sandr Polozov, Rishabh Singh, Benjamin G. Zorn, and Sumit Gulwani. 2015. User

Interaction Models for Disambiguation in Programming by Example. In Proceed-
ings of the ACM Symposium on User Interface Software and Technology. 291–301.
doi:10.1145/2807442.2807459

[53] Microsoft. 2024. Microsoft PROSE SDK. https://github.com/microsoft/prose/

tree/main. Accessed: August 20, 2024.

[54] Microsoft. 2024. Microsoft SQL Server Data Tools. https://learn.microsoft.com/

en-us/sql/ssdt/sql-server-data-tools?view=sql-server-ver16. Accessed: March 1,

2024.

[55] Arpit Narechania, Fan Du, Atanu R Sinha, Ryan Rossi, Jane Hoffswell, Shunan

Guo, Eunyee Koh, Shamkant B Navathe, and Alex Endert. 2023. DataPilot:

Utilizing Quality and Usage Information for Subset Selection during Visual Data

Preparation. In Proceedings of the CHI Conference on Human Factors in Computing
Systems. ACM. doi:10.1145/3544548.3581509

[56] Zara Nasar, Syed Waqar Jaffry, and Muhammad Kamran Malik. 2021. Named

entity recognition and relation extraction: State-of-the-art. Comput. Surveys 54,
1 (2021), 1–39. doi:10.1145/3445965

[57] Felix Naumann. 2014. Data profiling revisited. ACM SIGMOD Record 42, 4 (2014),

40–49. doi:10.1145/2590989.2590995

[58] OpenRefine, Inc. [n. d.]. Open Refine. https://openrefine.org. Accessed: March 1,

2024.

[59] Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr Polozov, Sumit Gulwani,

and ToddMillstein. 2018. FlashProfile: a framework for synthesizing data profiles.

Proceedings of the ACM on Programming Languages 2, OOPSLA (2018), 1–28.

doi:10.1145/3276520

[60] Marcus Pöckelmann, Andre Medek, Paul Molitor, and Jörg Ritter. 2015. CATview

- supporting the investigation of text genesis of large manuscripts by an overall

interactive visualization tool. Proceedings of the Digital Humanities (2015).
[61] Vijayshankar Raman and Joseph M. Hellerstein. 2001. Potter’s Wheel: An Inter-

active Data Cleaning System. In Proceedings of the International Conference on
Very Large Data Bases. 381–390.

[62] Shejuti Silvia, Ronak Etemadpour, June Abbas, Sam Huskey, and Chris Weaver.

2016. Visualizing variation in classical text with force directed storylines. In

Proceedings of the Workshop on Visualization for the Digital Humanities.
[63] Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfister, and Alexander M Rush.

2017. LSTMVis: A tool for visual analysis of hidden state dynamics in recurrent

neural networks. IEEE Transactions on Visualization and Computer Graphics 24,
1 (2017), 667–676. doi:10.1109/TVCG.2017.2744158

[64] Hendrik Strobelt, Daniela Oelke, Christian Rohrdantz, Andreas Stoffel, Daniel A.

Keim, and Oliver Deussen. 2009. Document Cards: A Top Trumps Visualization

for Documents. IEEE Transactions on Visualization and Computer Graphics 15, 6
(2009), 1145–1152. doi:10.1109/TVCG.2009.139

[65] Joe Tekli. 2016. An Overview on XML Semantic Disambiguation from Unstruc-

tured Text to Semi-Structured Data: Background, Applications, and Ongoing

Challenges. IEEE Transactions on Knowledge and Data Engineering 28, 6 (2016),

1383–1407. doi:10.1109/TKDE.2016.2525768

[66] Trifacta, Inc. [n. d.]. Trifacta. https://www.trifacta.com. Accessed: March 1,

2024.

[67] G. J. J. van den Burg, A. Nazábal, and C. Sutton. 2019. Wrangling messy CSV

files by detecting row and type patterns. Data Mining and Knowledge Discovery
33, 6 (Nov 2019), 1799–1820. doi:10.1007/s10618-019-00646-y

[68] Gust Verbruggen, Vu Le, and Sumit Gulwani. 2021. Semantic programming

by example with pre-trained models. Proceedings of the ACM on Programming
Languages 5, OOPSLA (2021), 1–25. doi:10.1145/3485477

[69] Lusheng Wang and Tao Jiang. 1994. On the Complexity of Multiple Sequence

Alignment. Journal of Computational Biology 1, 4 (1994), 337–348. doi:10.1089/

cmb.1994.1.337

[70] Yunhai Wang, Xiaowei Chu, Chen Bao, Lifeng Zhu, Oliver Deussen, Baoquan

Chen, and Michael Sedlmair. 2018. EdWordle: Consistency-Preserving Word

Cloud Editing. IEEE Transactions on Visualization and Computer Graphics 24, 1
(2018), 647–656. doi:10.1109/TVCG.2017.2745859

[71] Xiaoda Xie, Songlei Jian, Chenlin Huang, Fengyuan Yu, and Yunjia Deng. 2023.

LogRep: Log-based Anomaly Detection by Representing both Semantic and

Numeric Information in Raw Messages. In IEEE International Symposium on
Software Reliability Engineering. IEEE Computer Society, 194–206. doi:10.1109/

ISSRE59848.2023.00015

[72] Kai Xiong, Xinyi Xu, Siwei Fu, Di Weng, Yongheng Wang, and Yingcai Wu. 2024.

JsonCurer: Data Quality Management for JSON Based on an Aggregated Schema.

IEEE Transactions on Visualization and Computer Graphics 30, 6 (2024), 3008–3021.
doi:10.1109/TVCG.2024.3388556

[73] Tariq Yousef and Stefan Janicke. 2021. A Survey of Text Alignment Visualization.

IEEE Transactions on Visualization and Computer Graphics 27, 2 (2021), 1149–1159.
doi:10.1109/TVCG.2020.3028975

[74] Tianyi Zhang, Zhiyang Chen, Yuanli Zhu, Priyan Vaithilingam, Xinyu Wang,

and Elena L. Glassman. 2021. Interpretable Program Synthesis. In Proceedings of
the CHI Conference on Human Factors in Computing Systems. ACM. doi:10.1145/

3411764.3445646

[75] Jian Zhao, Fanny Chevalier, Christopher Collins, and Ravin Balakrishnan. 2012.

Facilitating discourse analysis with interactive visualization. IEEE Transactions
on Visualization and Computer Graphics 18, 12 (2012), 2639–2648. doi:10.1109/
TVCG.2012.226

[76] Ning Zhong, Yuefeng Li, and Sheng-Tang Wu. 2012. Effective Pattern Discovery

for Text Mining. IEEE Transactions on Knowledge and Data Engineering 24, 1

(2012), 30–44. doi:10.1109/TKDE.2010.211

https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1109/TVCG.2015.2467621
https://doi.org/10.1145/3613904.3642415
https://doi.org/10.1109/TVCG.2023.3329120
https://doi.org/10.1145/1007568.1007641
https://doi.org/10.1145/3035918.3064034
https://doi.org/10.1145/3035918.3064034
https://doi.org/10.1007/978-3-319-91815-0
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1145/2254556.2254659
https://doi.org/10.1109/TVCG.2020.3030462
https://doi.org/10.1109/TVCG.2010.175
https://doi.org/10.1109/TVCG.2018.2865022
https://doi.org/10.1109/TVCG.2018.2865022
https://doi.org/10.1016/j.accinf.2022.100571
https://doi.org/10.1016/j.accinf.2022.100571
https://doi.org/10.1109/TVCG.2022.3209354
https://doi.org/10.1145/2089094.2089101
https://doi.org/10.1145/2807442.2807459
https://github.com/microsoft/prose/tree/main
https://github.com/microsoft/prose/tree/main
https://learn.microsoft.com/en-us/sql/ssdt/sql-server-data-tools?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/ssdt/sql-server-data-tools?view=sql-server-ver16
https://doi.org/10.1145/3544548.3581509
https://doi.org/10.1145/3445965
https://doi.org/10.1145/2590989.2590995
https://openrefine.org
https://doi.org/10.1145/3276520
https://doi.org/10.1109/TVCG.2017.2744158
https://doi.org/10.1109/TVCG.2009.139
https://doi.org/10.1109/TKDE.2016.2525768
https://www.trifacta.com
https://doi.org/10.1007/s10618-019-00646-y
https://doi.org/10.1145/3485477
https://doi.org/10.1089/cmb.1994.1.337
https://doi.org/10.1089/cmb.1994.1.337
https://doi.org/10.1109/TVCG.2017.2745859
https://doi.org/10.1109/ISSRE59848.2023.00015
https://doi.org/10.1109/ISSRE59848.2023.00015
https://doi.org/10.1109/TVCG.2024.3388556
https://doi.org/10.1109/TVCG.2020.3028975
https://doi.org/10.1145/3411764.3445646
https://doi.org/10.1145/3411764.3445646
https://doi.org/10.1109/TVCG.2012.226
https://doi.org/10.1109/TVCG.2012.226
https://doi.org/10.1109/TKDE.2010.211

	Abstract
	1 Introduction
	2 Related Work
	2.1 Data profiling
	2.2 Visual analytics for textual data

	3 Design goals
	3.1 Structural patterns of semi-structured data
	3.2 Wrangling operations of semi-structured data

	4 Usage Scenario
	5 StructVizor
	5.1 Data processing
	5.2 Visual profiling
	5.3 Interactive wrangling
	5.4 Implementation

	6 Technical evaluation
	6.1 Performance
	6.2 Discussion on failures cases

	7 User study
	7.1 Study Design
	7.2 Quantitative Results
	7.3 Qualitative Feedback

	8 Discussion
	8.1 Implications
	8.2 Limitations and future work

	9 Conclusion
	Acknowledgments
	References

