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Relation-driven Query of Multiple Time Series
Shuhan Liu, Yuan Tian, Zikun Deng, Weiwei Cui, Haidong Zhang, Di Weng, Yingcai Wu

Abstract—Querying time series based on their relations is
a crucial part of multiple time series analysis. By retrieving
and understanding time series relations, analysts can easily
detect anomalies and validate hypotheses in complex time se-
ries datasets. However, current relation extraction approaches,
including knowledge- and data-driven ones, tend to be laborious
and do not support heterogeneous relations. By conducting a
formative study with 11 experts, we concluded six time series
relations, including correlation, causality, similarity, lag, arith-
metic, and meta, and summarized three pain points in querying
time series involving these relations. We proposed RelaQ, an
interactive system that supports the time series query via relation
specifications. RelaQ allows users to intuitively specify heteroge-
neous relations when querying multiple time series, understand
the query results based on a scalable, multi-level visualization,
and explore possible relations beyond the existing queries. RelaQ
is evaluated with two cases and a user study with 12 participants,
showing promising effectiveness and usability.

Index Terms—Multiple time series query, time series relations,
interactive visual query system, time series analysis

I. INTROCUTION

Many research efforts [1]–[3] have been devoted to the
interactive query of multiple time series, empowering users to
find patterns from large-scale time series data quickly. Among
the constraints used in such queries, time series relations, such
as correlation [4], [5], causality [6], [7], and similarity [2],
[8], are frequently employed to describe the patterns that span
across multiple time series. For instance, when analyzing a
stock dataset with multiple time series, an analyst may query
two time fragments (e.g., one month) that have a local negative
correlation while the two time series have a positive correlation
overall (e.g., one year), as shown in the Fig. 1
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Fig. 1. An example of a relation-driven query. An analyst observed a global
positive-correlated pair of time series (A and B) and sought local negative-
correlated fragments. Finally, the result time fragments were highlighted.
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Most of the current approaches for the interactive query of
multiple time series identify the desired time series fragments
based on the given thresholds [9], [10] and trend patterns [11]–
[13], such as the head and shoulders patterns [14]. Nonethe-
less, while these approaches primarily measure the similarity
between query specifications and the resulting time series, they
unfortunately do not facilitate the specification of relationships
amongst these time series. Due to the lack of interactive
approaches for relation-driven time series queries, analysts
often resort to writing lengthy scripts with statistical libraries
(e.g., Pandas [15]) or tools (e.g., tradingview [16]), which can
be laborious and error-prone. Moreover, analyzing the relations
based on the queried time series fragments is also a difficult
task: How do these fragments distribute? Are the strengths of
these relations consistent over time? Are there more relations
between these fragments and the rest of the data?

To better understand the practice, challenges, and require-
ments of the relation-driven query of multiple time series, we
conducted a formative study with eleven time-series analysts
from different domains. This study helps us summarize a)
in what time series relations the analysts are interested; b)
why these relations are employed in multiple time series
analysis; and c) how these relations are queried and support
the workflows of the analysts. We conclude the following three
challenges in designing a new relation-driven time series query
approach from our observations.

Diverse and heterogeneous time series relations. In the
formative study, we have identified six types of time series
relations. Analysts must retrieve the multiple time series
satisfying multiple types of relation constraints. Not only are
new interactions required to enable the easy specification of
the relations among time series, but a new retrieval algorithm
is also needed to efficiently find the matches satisfying the
different relations in one query.

Intuitive interpretation of complex query results. The
results of relation-driven time series queries can be difficult to
comprehend, given that many matches can be produced from
a large-scale time series dataset. For example, analysts need to
check the fluctuation in the strengths of the queried relations
to determine whether the relations become more consistent
over time. Moreover, the incorporation of relaxed retrieval,
which allows partial matching to increase the diversity of
query results, also introduces the difficulty in understanding
the structural changes in the resulting time series relations.

Efficient generation of reliable relation suggestions. In-
spired by the query suggestions provided by modern search
engines, the proposed approach should support the exploration
of the potential relations among the time series of interest
beyond what have been specified in the queries. However,
given the sheer volume of time series and the diverse types of
time series relations, it is challenging to efficiently generate
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Fig. 2. The user interface of RelaQ. It is composed of three main parts: In the (A) input panel, users can sketch trends and specify relations. In the (B)
result panel, users can obtain an overview, compare results in the matrix view, and inspect details in the time view. In the (C) guidance panel, there are
recommended timeboxes. Besides, this figure also displays part of the first case in Sec. V-A: (D) an example query and (E-F) some patterns in its results.

and provide useful relation suggestions to complement the
existing queries.

We propose RelaQ, an interactive approach that retrieves
multiple time series based on their relations. To address the
above challenges, RelaQ comprises a query interface (Fig. 2)
that allows users to visually specify various relations among
time series and processes the queries with a new search
algorithm that supports matching time series with heteroge-
neous relation constraints. The query interface is composed of
three parts (Fig. 2A-C): an input panel, a result panel, and a
guidance panel. A scalable visual design of the result panel,
depicting the topologies and characteristics of the matched
results, is incorporated to visualize the resulting time series at
different levels of detail, allowing users to perform multiscale
analysis. Moreover, the guidance panel displays an overview
of the suggestions that extend the existing queries with more
relations and time series.

Our contributions are summarized as follows:
• A formative study that discusses the scope of time series

relations and their applications and summarizes the chal-
lenges and requirements in the relation-driven query of
multiple time series;

• A novel approach that combines a fuzzy query model and
an interactive interface to support the easy formulation of
heterogeneous relation constraints, the flexible query of
multiple time series based on specified relations, and the
intuitive interpretation of the query results.

II. RELATED WORK

We mainly reviewed time series studies on query specifica-
tion, query matching, and query results visualization.

A. Time Series Query Specification

Specifying a query is the first step of time series retrieval.
Intuitive specification approaches facilitate users to formulate
queries efficiently. According to different input forms, existing
methods can be divided into four categories: text-, value-,
example-, and sketch-based query.

The text-based query allows expressing desired patterns
through natural language or regex. Agrawal et al. [11] were
the first to propose a shape definition language (SDL) that
describes time series patterns. SDL assisted in formulating
a time series into trend shape symbol sequences (e.g., up,
down, and stable). In recent years, there have also been
many methods to support regex [17] and constrained natural
languages [18]. However, text-based methods suffer from the
concern of learnability and intuitiveness because users must
convert imagined patterns into a certain abstract language.

The value-based query requires to set value bounds to
query time series passing through. TimeSearcher [9], [19] was
the first to adopt timeboxes to identify value constraints. A
timebox is a rectangle, where the horizontal axis represents
the length constraints of a time range, while the vertical axis
represents the value bounds of time series data.

Later, the example-based methods extensively consider
time series within a timebox as examples for querying similar
patterns. Many models built based on examples make the
real-time performance of querying time series significantly
improved, such as PSEUDo [2], PEAX [1], and KD-Box [3].
However, value- and example-based methods are not flexible
to describe various trend shapes like “head-and-shoulder”

, especially when the desired example is hard to locate.
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In the sketch-based query methods, users can sketch desired
trend shapes to retrieve similar time series. We followed Man-
nino et al. [14] and divided existing sketch-based approaches
into three categories: overlays, annotated sketches, and shape-
restricted sketches. Overlaying approaches [12], [13], [20]
leveraged the predefined time and amplitude axes to make the
scale clear but were highly dependent on the selected reference
time series. Annotated sketches approaches (e.g., Qetch [14],
Holz et al. [21]) allowed users to freely hand-draw desired
patterns on blank canvas but required providing scale or pattern
descriptions. Many visual query systems allowed users not
to provide scale annotations but to adaptively match patterns
based on restricted shapes [22], [23]. These visual query
systems had good robustness, but slacked scale constraints led
to a high recall rate. While sketching is useful and expressive,
none of the existing methods supports specifying multiple time
series and their relations. Users cannot always sketch what
they want, such as two correlated time series.

In addition, existing methods prioritize similarity between
the input query and output results but ignore relations among
different time series in one query. Thus, we are inspired to
propose RelaQ, which supports querying multiple time series
with heterogeneous relations. RelaQ is based on sketching
because it describes temporal features expressively.

B. Time Series Query Matching

Most general time series query matching approaches
focus on retrieving similar time series, so many methods have
been proposed to evaluate the similarity between the query
and the results. Euclidean distance (ED) [24] and dynamic
time warping (DTW) [25] are popular for measuring distances
between time series. According to the survey of Ding et
al. [26], DTW is the best among all distance measures, but
ED is faster so can be used when the scale of data increases.
Both ED and DTW require a sliding window technique.
Some researchers also transform time series into symbolic
sequences and exploit string-matching techniques. Symbolic
Aggregate approXimation (SAX) [27] is a proven efficient
tool. SAX compresses the length by segmenting the time
series and reduces the cardinality by discretizing and sym-
bolizing the values. There are also many approaches based
on machine learning techniques [13], [28] or designed for
special situations [3]. For large-scale time series data, there are
mature commercial database query tools available, including
time series databases (e.g., InfluxDB [29], Timestream [30]),
relational time series databases (e.g., TimescaleDB [31]), and
general search databases (e.g., Elasticsearch [32]).

As for relation-driven query matching, despite many
studies devoted to helping query, extract, and analyze re-
lations between time series, most are designed for certain
relations, such as correlation [33], [34], causality [35], [36],
co-occurrence [37]–[39]). In other words, algorithms and tools
that support matching heterogeneous relations have still not
been sufficiently studied. If users want to obtain complex
relations in real analysis scenarios, they can only return to
scripts or commercial tools, such as tradingview [16].

Thus, we propose a flexible algorithm that simultaneously
matches trends and heterogeneous relations, enabling RelaQ
to support complex relation-driven queries.

C. Dynamic Graph Visualization

Intuitively visualizing query results is beneficial for users
to refine queries or perform further exploration. Query results
are dynamic graphs of time fragments (nodes) with changing
relations (links), like two stocks that may shift from positive to
negative correlation and become unrelated over time. Beck et
al. [40] developed a three-level taxonomy for dynamic graph
visualization techniques. The first level includes three types:
animation, timeline, and hybrid.

As relations are integrated closely with time lags and trends,
a timeline-based visualization could enable time-oriented ex-
ploration of query results. Hence, we mainly reviewed linear
timeline techniques [41]. Burch et al. [42] embedded a timeline
into each cell of the matrix design, while Bach et al. [43]
stacked matrices to a 3D cube by timeline. Besides, Hlawatsch
et al. [44] introduced a visualization based on adjacent lists.
However, neither matrix-based nor list-based design is intuitive
for depicting time lags. The node-link-based designs mapped
time to space and created lag-aware static images, which assist
users in understanding the temporal graph evolution. Beck et
al. [40] categorized these techniques into juxtaposed [45], [46],
superimposed [47], or integrated [48] layouts.

Moreover, since the node-link-based visualization tech-
niques underperform on the comparison task, we consider
integrating matrix-based methods. Inspired by LineUp [49],
we design an exceptional matrix-node-integrated visualization
to balance the data nature and user experience. It also supports
flexible decision-making on dynamic temporal graphs.

III. FORMATIVE STUDY

This section presents a formative study that aims to discover
the pain points and needs in the time series query from the
relation perspective and further compile the user requirements
that guide the development of a relation-driven time series
retrieval tool. By interviewing time series analysts, we at-
tempted to gather insights on three research questions: a) what
time series relations were considered important to their daily
analysis tasks; b) why their analysis tasks required these time
series relations; and c) how they retrieved and leveraged these
time series relations to support their analysis tasks.

A. Method

To answer the above questions, we first conducted a liter-
ature survey to search for the types of time series analysis
tasks and narrow down the scope of time series relations.
Then, we prepared seven interview questions and conducted
semi-structured interviews individually with eleven time se-
ries analysts. Finally, we analyzed their responses with the
thematic coding approach [50] and compiled three major user
requirements that supported the design of the proposed tool.

Literature survey. To produce an initial list of time se-
ries relations, we searched for the papers published in the
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prominent data mining, visualization, and human-computer
interaction conferences and journals that contained keywords
including multiple time series and time series relation. The
surveyed conferences and journals include but are not limited
to ACM KDD, IEEE VIS, IEEE TVCG, ACM CHI, etc. Two
co-authors with years of experience in time series analysis
went through 112 papers separately and tagged the keywords
that described the time series relations used in the papers.
After reconciling and merging the keywords, we summarized
ten relations: similarity, correlation, causality, co-occurrence,
precedence, cascade, lag, cycle, hierarchy, and group.

Semi-structured interviews. To refine the preliminary
scope of time series relations and understand how these
relations were involved in the time series analysis tasks, we
recruited eleven time series analysts (five male and six female)
as participants and conducted semi-structured interviews. The
participants had diverse backgrounds such as energy (1), robot
simulation (2), urban computing (1), stock trading (2), cloud
services (3), and sports computing (2), and each participant
had a minimum of two years of experience in analyzing
time series data. They did not receive monetary compensation
for participating in this formative study. The interviews were
conducted via video telephony due to pandemic restrictions
and followed the questions listed below (M denotes multiple-
choice questions, S denotes single-choice questions, and O
denotes open-ended questions):
Q1. [M] Which time series analysis tasks do you usually

work on?
Q2. [S] How many times per week do you work on time

series tasks?
Q3. [O] What is the scale of the time series data (in the order

of magnitude) you are dealing with?
Q4. [M, O] Which relations do you want to retrieve during

the analysis process?
Q5. [O] Which insights do you gain from these relations,

and how important are they?
Q6. [O] How do you typically retrieve these time series

relations in your data? Is there any limitation?
Q7. [O] In existing approaches, are there any advantages

or functions you prefer? After retrieving time series
relations, what else will you explore?

Q1-3 were designed to learn the participants’ expertise
and routines, including their familiar analysis tasks (Q1),
experience profile (Q2), and data scale (Q3). Q1 has 9 choices
(Fig. 3A) based on the prior surveys of time series analysis
tasks [51], [52]. For Q3, we asked the participants to estimate
the average length and the number of time series. Q4-7 were
designed to solicit the participants’ opinions on the scope of
time series relations, including the desired relations in time
series query (Q4), the usages and importance of the relations
(Q5), the prior approaches used in the query (Q6), and analysis
preferences and requirements (Q7). Q4 is a multiple-choice
and open-ended question, where we first asked the participants
to choose from our initial list of time series relations and then
asked the participants if some relations should be removed
and/or more relations should be added. Each interview lasted
between 30-50 minutes. The participants’ responses were
recorded and coded with the thematic coding approach [50].

Fig. 3. Investigation responses from time series analysts. (A) Typical time
series analysis tasks that participants work on, all nine types of tasks are
covered. (B) The scale of time series data that participants usually deal with,
the number of variables × the length of a single time series. (C) Frequency
that analysts analyze time series in a week, reflecting all participants are very
familiar with time series data.

B. Results

1) Participants’ Backgrounds (Q1-3): Fig. 3A displays
experts’ familiar time series analysis tasks (Q1). Most of the
participants are familiar with more than two types of analysis
tasks, and prediction and summarization are the most common.
Though only P5 has worked on rule discovery, all other
analysis tasks are mentioned by at least three participants.

We investigate participants’ experience profiles via their
working frequency (Q2). Fig. 3C reveals that most participants
maintained a frequency of three or more times a week.

To paint a clearer picture of the participants’ analysis work,
we survey the scale of the time series data (Q3). Since multiple
time series have two dimensions (the number of series and the
length of each time series), we asked participants to describe
both. According to Fig. 3B, the number of time series ranges
in order of magnitude from 10 to 104, while the lengths range
in order of magnitude from 10 to 105.

Thus, the diverse backgrounds and high average proficiency
of our participants make us confident that various domains and
tasks are covered in our formative research.

2) Time Series relations Scope (Q4-5): We summarized
six categories of relations, including similarity, correlation,
causality, lag, meta, and arithmetic, based on the participants’
responses. Co-occurrence, precedence and cascade were re-
moved because they can be represented by the combination of
lag and other relations; cycle was removed because it mainly
focuses on the temporal characteristics of individual time
series; and hierarchy and group were aggregated into meta,
which captures the latent semantic relations between time
series. Besides, we added arithmetic according to participants’
analysis requirements.

We started the introduction of the scope from time series’
different granularity, from high to low: time Series, Fragments,
and Points. The strengths of a relation vary on different
granularity (see TABLE I). This section will discuss the
definition, usage, and calculation of time series relations.

Similarity: Similarity between two time series refers
to the degree to which they exhibit comparable pat-
terns and behavior. The similarity relation is widely

used in many analysis tasks, especially those that depend on

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3397554

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

TABLE I
THE GRANULARITY AND ADOPTED CALCULATION METHODS OF THE TIME

SERIES RELATIONS. ALL RELATION STRENGTHS ARE NORMALIZED.

Relations Granularity Calculation Methods
Names P F S RelaQ Adopted Domains
Correlation × ✓ ✓ Pearson Coefficient [53] [-1.0,+1.0]
Similarity ✓ ✓ ✓ Euclidean Distance [24] [+0.0,+1.0]
Causality ✓ ✓ ✓ Granger Test [54] [+0.0,+1.0]
Lag ✓ ✓ ✓ Attached to other relations
Meta ✓ Predefined by users 0-N, 1-Y
Arithmetic ✓ ✓ ✓ {

∑
, Avg, V ar,Min,Max} × {≥,≤,=}

extracting commonalities or differences. For tasks including
clustering (P1, P3, P6, P8, P10), indexing (P2, P4), and
prediction (P1, P11), time series with high similarity are
important. For similarity-aware anomaly detection (P4-5, P8),
participants are interested in time series with low similarity.
According to the interviews, Euclidean distance [24], dynamic
time warping [25], and MAPE [55] are commonly used
similarity measurements.

Correlation: Correlation between two time series
refers to the degree to which they exhibit an associated
relation with each other. Correlation is one of the most

important relations serving various time series analysis tasks,
such as clustering (P1, P3, P6), classification (P6-7), prediction
(P3, P6), anomaly detection (P6), and motif/rules discovery
(P4-5). There are two categories of correlations: linear and
non-linear. The most commonly used way to calculate the
linear correlation is Pearson coefficient [53]. Also, there are
approaches for non-linear correlation (SROCC [56] and Cop-
ula [57]) and specific domain measures (P7:PLV [58]).

Causality: Causality between two time series refers to
the relation where one time series, known as the cause,
has a direct influence on the other time series, known

as the effect. The causality is critical in the prediction task (P1,
P5-6, P11). Participants often query time series with causal
relations in history to validate predicted results. Besides, it is
sometimes adopted to help mine motifs or rules as well as
detect anomalies (P5-6). The causality is usually established
by causal inference techniques, such as Granger causality [54]
or Bayesian networks [59]. The strength can be computed via
p-value and Bayesian probability, respectively.

Lag: Lag relation between two time series refers to the
temporal delay or phase shift between them. The lag
relation reflects the time dimension independently and

can be combined with other five relations. Participants usually
query lag relation in analysis tasks to obtain temporal features,
for example, prediction (P3, P6-7, P9-10) and periodical motif
discovery (P4, P7). The time lag is usually calculated by cross-
correlation [60], self-correlation (P7), n-derivation (P3), or
inferred from domain knowledge (P7, P9-10).

Meta: The meta relation between two time series
refers to the semantic or contextual attributes that
they share, usually about hierarchies and categories.

For example, two time series representing daily births in LA
and California state may have a meta relation due to their
hierarchical structure. The meta relation provides contextual

information and helps understand time series in context. Par-
ticipants usually adopt it as a kind of filter. It is widely used in
time series analysis tasks, such as clustering (P1, P3), classifi-
cation (P3), and semantic anomaly detection (P8). Participants
usually measure it through predefined data configuration.

Arithmetic: Arithmetic relation between two time
series refers to the statistical features. Specifically,
the arithmetic relation is usually composed of an

operator and a comparator. Participants usually query arith-
metic relations to locate time series with specific statistical
features. For example, the average (operator) value of time
series A is greater (comparator) than that of B. According
to the interview, participants query for arithmetic relations in
many analysis tasks: classification (P7), prediction (P9), and
anomaly detection (P8, P10). Commonly used operators and
comparators are listed in TABLE I.

3) User Requirements Analysis (Q6-7): Based on the par-
ticipants’ responses, we summarized two types of queries
(target- and breadth-oriented) and three user requirements.
R1. Straightforward query of desired time series. Accord-
ing to the participants’ responses, a straightforward approach
is required to support intuitive query formulation and flexible
query processing since there were many limitations in their
daily-used approaches.

In terms of query formulation, most participants found
describing the relation among time series to be the most
challenging part. Currently, the method for specifying relations
involves writing scripts and rules, which participants described
as “an empirical work” and a “heavy mental burden”. They
must transform abstract relations into concrete rules (e.g., if-
else statements, P2, P7, P11) or accurate parameters (P3, P4-6,
P8). Many participants struggled with this transformation and
expressed a desire to describe relations directly. Additionally,
participants discussed constraints, such as values and trends,
that describe the inner features of time series. While many
participants agreed that sketching trends to query time series
was expressive (P1-2, P5-7, P11), they found it challenging to
adopt this approach in their analysis workflow. P5 explained
that she often needed to search for correlated time series with
partly unknown trends, which she could not sketch entirely.
Nevertheless, participants still found sketching trends to be an
intuitive approach and expressed a desire to use it.

In terms of query processing, participants expressed concern
about processing strategy, highlighting the importance of flexi-
ble processing in reducing tedious query constraint refinement.
They were not always confident that their queries would be
entirely correct on the first attempt (P2, P5). Some participants
suggested a fuzzy-match approach to processing queries, as it
could include more potential results (P1, P3).
R2. In-depth understanding of query results. Participants
reported that the in-depth understanding of query results
primarily involves evaluating and identifying queried patterns
within time series. Thus, a comprehensive and interactive dis-
play of results is essential for supporting such a requirement.

Nearly all participants expressed a desire to prioritize query
results based on diverse metrics, such as confidence (P8),
similarity (P9-11), correlation (P1, P11), and matching score
(P3, P7). However, they often had to manually calculate and
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balance between multiple metrics. P1, a stock analyst, re-
ported that homogeneous evaluation criteria can affect feature
selection and thus prediction results, prompting a desire to
identify evaluation metrics dynamically. Overall, an interactive
approach is needed to support flexible evaluation, allowing
customizing metrics based on specific needs.

Moreover, some participants found it cumbersome to locate
desired patterns accurately in query results. For example,
P9, a software analyst, told us that she usually visualized
results manually using matplotlib, then inspected the beginning
timestamp of anomaly increasing by naked eyes. To overcome
the limitations of such a tedious and inaccurate inspection
process, an intuitive display of query results is needed to
support the analysis of detailed time series and relations.
R3. Exploration based on reliable guidance. The majority of
participants reported that the current query process was time-
consuming. Upon further investigation into participants’ work-
flow, we identified the most tedious stage: exploring desired
queries. This often occurs when analysts did not have a specific
target in mind, and therefore needed to explore desired queries
by iteratively finding related relations and extending existing
queries. It differs from the situations previously discussed in
R1: participants could describe a clear target, such as querying
two correlated stocks. Taking inspiration from Heer et al. [61],
we categorized these two types of queries as breadth-oriented
and target-oriented, respectively, with participants needing to
perform both types for complex time series analysis tasks.

Breath-oriented queries required participants to find new
related relations and extend existing queries in large-scale
time series data. Due to complexity, participants reported
getting lost in the exploration process (P2). Therefore, many
participants (P1-2, P4, P6, P11) expected reliable guidance.
Specifically, step-by-step guidance is preferred (P2, P4) as it
gives them full control over the query.

IV. RELAQ

This section presents RelaQ, an interactive time series
retrieval tool based on relation queries, which was care-
fully designed to support the requirements summarized in
Sec. III-B3. The workflow of using RelaQ is illustrated in
Fig. 4. First, users can upload a dataset consisting of multiple
time series, along with a configuration file describing the
semantic labels (e.g., group of belonging) for each time series.
RelaQ preprocesses the uploaded data into compressed time
series, relation indexes, and trend indexes. Second, users can
specify query constraints among interested time series with
the input panel, and RelaQ finds and returns matches for the

Preprocess

User Interface

Match

Backend Model

Recommend

Upload

Guide

Input Query

Data & Config

Ouput Results

Guidance

Raw Time Series
Compressed TS
Relation Indexes
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Fig. 4. The overview of RelaQ’s workflow. Users upload a multiple time
series dataset and a configuration file to RelaQ, which preprocesses the data,
builds various indexes, and allows users to specify queries. The system can
also provide guidance by recommending query constraints.

input query with a search model. Third, RelaQ can provide
guidance in query specification by offering additional time
series relations within the dataset. RelaQ is implemented based
on React-Redux-TS [62] and Flask-Python [63].
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Fig. 5. This shows a three-step data preprocessing method using an example.
The raw data contains multiple time series (SF, LA, ..., FR) and label
descriptions (SF’s State being CA). (A) First, time series are compressed by
taking the average of segments with Sampling Length=4 so the blue line shows
compressed data. (B) Second, relation indexes are computed. We compute
the relation strength between each pair of time series and record all time
series names in the descending order of relation strength on the whole length.
e.g., SA is the city with the highest similarity strength with SF. (C) Third,
trend indexes are computed. We transformed compressed data into symbolic
sequences using SAX [27] (alphabet size = 4). The sequence (ZXWWXY) is
built as a trie (depth = 8/4 = 2, box length = 8, sampling length = 4). e.g.,
The starting points of ZX contain [0], and the ratio is 0.2.

A. Preprocessing Data
Before querying, users should upload two CSV files - one

dataset and one configuration file. The dataset file consists of
rows representing time points, with the first column indicating
timestamp and each of other columns containing data for time
series. The configuration file describes labels (e.g., SF’s State
is CA) for each time series in each row. RelaQ preprocesses
the uploaded dataset with the following three steps (see Fig. 5).

First, we normalize and compress time series (Fig. 5A).
Users should specify Sampling Length, the length of each
segment of the time series divided for compression. RelaQ
uses PAA [64], which takes the average of segments to
compress time series. Second, we calculate relation indexes
(Fig. 5B). We enumerate pairs of compressed time series and
calculate their correlation, similarity, and causality strength
via methods listed in TABLE I on the whole length. All
time series’ names are recorded in the descending order of
relation strength. Third, we calculate trend indexes (Fig. 5C).
We repeat the first and second steps but using Z-normalization
instead of min-max-normalization and transform data into
symbolic sequences via SAX [27] (alphabet size = 4, the
size of symbols’ set). Users should specify Box Length, the
desired length of time segments the pattern should continue.
Symbolic sequences are then divided into many segments. The
division adopts a sliding window technique: the sliding step
is one symbol, while the window size depends on the box
and sampling length (e.g., 8/4 = 2, round when indivisible).
Symbolic segments are built into a trie, where each node
records possible next symbols and their occurrence ratio. The
segment starting is also recorded at the leaf node.

If the preprocessing takes longer than 2 minutes, it will be
moved to the background for continued computation, allowing
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the user to begin querying. When a query involves uncomputed
indexes, the computation of those indexes will be prioritized.

Justification. There are two types of parameters in RelaQ,
pre-defined (alphabet size) and user-specified (sampling length
and box length). The selection of alphabet size considered the
user’s mental burden and the refinement. We choose α = 4,
trying to distinguish not only increasing/decreasing trends but
also distinguish steep/gentle slopes. As for user-specified pa-
rameters, manual clarification or automated adaptive matching
would be a trade-off. On the one hand, when the time step
unit of the dataset has a clear semantic meaning, specifying
a definite length can make the query clear. For example, if
the time step unit of the dataset is “days”, querying the daily
air pollution index for a week would require a box length
of “7 days” and a sampling length of “1 day”. In this case,
the user-specified parameters have concrete semantics, and a
slight variation to 5 days may lead to ambiguity since there
is a difference between weekdays and a whole week. On the
other hand, when the semantic impact of the time step unit is
not significant, especially when precision is crucial for queries,
such as in milliseconds, the length of the timebox may affect
the final query results. As the overall design of RelaQ aims to
minimize vague constraints in query specification and enable
users to describe a query more directly, we have adopted a
design that allows users to choose the length by themselves.

B. Formulating Queries

The first step to serve easy query is enabling intuitive
specification of query constraints (R1). Constraints in RelaQ
consist of two parts: inner-constraints (trends: the variation of
a time series, names: each name maps a specific time series,
values: the value domain of a time series) that reveal inner
features of a single time series and inter-constraints (relations)
that indicate relation features among multiple time series.

Basic settings. RelaQ uses two axes settings for organizing
queries: the horizontal axis encodes a timeline, and the vertical
axis is divided into multiple time series tracks. Relations are
encoded using color hue and stroke width to encode the type
and strength, respectively. RelaQ supports two-mode searches
to persist flexibility. The fuzzy search allows partial matching
of constraints and slight differences, while the strict search re-
quires all constraints to be satisfied. RelaQ commonly matches
strictly unless users check the fuzzy option.

Inner-constraints. RelaQ employs timeboxes, following the
approach in [19], to encode inner-constraints including trends,
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Fig. 6. An example query illustrates inner- and inter-constraints. “Which
city’s air quality index (AQI) will rise two hours later, following an upward
trend of SF’s AQI ranging in [25,35], and have a correlation strength greater
than 0.8? ” The inner-ones include (A) rising (trend), (B) SF (name), and
[25,35] (value). The inter-ones include (C) “2 hours later” (lag) and greater
than 0.8 (correlation). The phrase “which city” implies a default timebox.

names, and values. Users can sketch trends as straight line
segments on meshed timeboxes (Fig. 6A) and select names in
the interface (Fig. 6B). Once the name is selected, the value
range is determined by the minimal and maximal value of the
name’s corresponding time series. The aspect ratio of sketched
lines is fixed under the strict match mode, while it only
indicates trends (e.g., increasing) under the fuzzy match mode.
To reduce users’ mental burden, RelaQ offers two features.
First, it recommends frequent trends via trend indexes and
displays them as dashed lines in the timebox, which change
dynamically when sketching (Fig. 6A). Second, all inner-
constraints can be empty and will be matched automatically.
Empty timeboxes with no inner-constraint are called default
timeboxes. A default timebox is useful when a user wants to
emphasize the relation. For example, “querying two positively
correlated time fragments” only emphasizes their relation
should be the correlation but ignores inner-constraints.

Inter-constraints. RelaQ facilitates the explicit specifica-
tion of relations as outlined in Sec. III-B2, with relation icons
listed in the input panel (Fig. 2A) for easy selection and
addition of relation constraints. Colored lines with relation
icons are the visual representation of inter-constraints, linking
timeboxes. Since these lines display the relations between
time series, we named them relalinks. The relation interactions
cover six types summarized above and support free combina-
tions. Being different from the other five relations, the lag
relation pertains to the time dimension, so we allow users to
set lags by dragging timeboxes horizontally (Fig. 6B1) instead
of clicking a certain icon. Users can also adjust thresholds
and customize options (Fig. 6C) to allow fuzzy matching and
reverse matching (e.g., minimum similarity).

Justification. We mainly justify the design alternatives of
constraint specification interactions. As discussed in Sec. II,
Mannino et al. [14] identified that there were three types of
sketch approaches to query time series: a) overlay sketches,
b) annotated sketches, and c) restricted sketches. Overlay
sketches rely on a specific reference time series, so the name
must be specified, limiting the flexibility. Annotated methods
can lead to visual clutter when multiple time series with labels
are not placed clearly and organized. In contrast, restricted
sketches [22] focus on capturing the essential features. Re-
stricted sketches can make the sketch more visually appealing
and easier to understand for users at a glance. We take
clarity and simplicity as key considerations when designing the
specification approach, so we finally adopt restricted sketches.

C. Processing Queries
Besides the aforementioned specification approaches, an ef-

fective model that allows matching heterogeneous constraints
flexibly is also necessary to support easy query (R1). The
query process is end-to-end: Every time a user edits a query,
RelaQ searches for all matched results via a three-step match-
ing algorithm. An example input and output are displayed in
Fig. 7AC, while Fig. 7B1−3 reveal the matching process.

Since dynamic relations that change over time are often
modeled as graph problems, we are inspired to leverage the
node-link graph as a proxy to model this matching prob-
lem. For each input graph, nodes are timeboxes, and links
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Fig. 7. This figure displays a simplified example query: “Which city has a temperature that rises together with San Francisco and has a correlation strength
above 0.8” (A) The user input includes two timeboxes, [name (SF), trend (rising)] and [default (which city)], as well as relations, [correlation (above 0.8)]
between SF and the default timebox. (B1) RelaQ filters time fragments based on trends and records them as nodes. v1 is the only node that meets the rising
trend with a degree of 0.95 in SF, while v2−7 are all valid for the default timebox. (B2) For all pairs (SF-default) of nodes, relations are checked. The
correlation strength between v1 (SF) and v2 (default) is more than 0.8, so we construct a link. The same is between v1 and v3. (B3) RelaQ uses a depth-first
search on the final graph and obtains two results. (C) Two results reveal that SF will affect LA and SD with a strength of 0.99 and 0.98, respectively.

are relalinks. To distinguish, in the output graph, nodes are
fragments, and links are relations. Thus, this problem is to
match the input graph on the constructed dataset graph.

The construction of the dataset graph and matching are
integrated and progressive. The method is three-step (Fig. 7B):
(1) filter valid fragments as nodes, (2) construct links based on
relations, and (3) match final results. To simplify the narration,
we illustrate the method with an example of a single non-
dynamic relation. For more detailed explanations of dynamic-
relation queries, please refer to the supplementary material.

First, RelaQ filters fragments based on timeboxes xi. For
each timebox, we obtain the compressed time series according
to its name and use a sliding window technique to divide it into
several fragments. The window size is the box length, while
the sliding step is the sampling length. Then, we measure the
trend matching degree based on ED [24]. If the degree exceeds
threshold s = 0.7, we record the fragment as a valid node in
the set Xi. For example, regarding timebox x1 belonging to
SF, only v1 ∈ X1 matches the rising trend with the degree
0.95 in Fig. 7B1. When the trend constraint is not declared,
the matching degree will be set as 1. For the default timebox
with no name, RelaQ enumerates the first 20 time series in
the relation indexes. For instance, in Fig. 7B1, LA and SD are
the first two cities with the highest correlation to SF.

Second, RelaQ builds links based on relalinks yk, which
links xi and another timebox xj . We obtain Xi and Xj valid
nodes computed in the first step. For each relation yk, we
validate each pair of compliant fragments (nodes) in Xi×Xj ,
checking lag constraints and computing relation strength on
the fragment length via discussed formulas in TABLE I. If the
relation strength of a pair is over user-given threshold of yk, we
reserve it as a valid link in the set Yk. For instance, the relation
strength of link e1 ∈ Y1 between v1 ∈ X1 and v2 ∈ X2 is
0.99 in Fig. 7B2. The final dataset graph is G = (X,Y ).

Third, RelaQ uses depth-first search [65] with memoization
pruning techniques to form results. The search process is to
match the input graph in the built dataset graph. The search
order is based on the temporal order of timeboxes. RelaQ starts
the search from the earliest timebox in a query. Each result is
a connected subgraph g = (v, e) in G. In Fig. 7B3, the search
starts from v1, then transfers to v2, forming the first result,
and ends on v3, forming the second result.

Besides, the matching score r(g) is defined as Eq. 1, here

d(v) is the trend matching degree of node v, and l(e) is the
relation strength of link e. In Fig. 7C, the matching score of
the first result is 0.95 + 1 + |0.99| = 2.94.

r(g) =
∑

v∈X d(v) +
∑

e∈Y |l(e)| (1)

D. Interpreting Results

Intuitive visualizations of queried results are critical to
helping users understand retrieved time series and underlying
patterns. To satisfy R2, RelaQ should (1) visualize queried
time series with relations and (2) enable comparing different
results flexibly. RelaQ adopts a matrix view that compactly
organizes results in a matrix for comparison and a time view
that depicts results along the timeline in a temporal context.

Fig. 8. The visual design of the matrix view. Each row of the matrix is
a result and each column matches a relation or a fragment. There are three
interactions: (A) filter the range of distribution, (B) rank the results by a
specific column, and (C1−3) combine some columns. (C1) shows a valid
combination, a green relation links fragment1 and fragment2, while (C2) is
invalid, where the orange relation links these two fragments incorrectly. (C3)
reveals the auto-combination feature of RelaQ. (D1) is a design alternative
based on juxtaposed graphs and (D2) is the dismantled graph we adopt.

The matrix view (Fig. 8) is inspired by LineUp [49], a
widely used technique for comparing multidimensional items.
In the matrix view, each row is a result and each column
is a fragment (the result of a timebox) or a relation (the
result of a relalink). Since fragments and relations together
display a pattern, we connect the columns of fragments and
relations with links to keep consistency with the input query.
The column header displays the distribution of strengths for
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relations or trend-matching rates for fragments. Users can
adjust the range of distribution to filter results by moving the
slider (Fig. 8A). Each column has a sorting icon that (Fig. 8B),
when clicked, will arrange the results in descending order
based on the matching score of that column. Clicking the icon
again will switch to ascending order. To further assist users in
comparing patterns that have multiple relations and fragments,
we allow them to combine multiple columns. RelaQ enables
users to combine columns by simply clicking on them. For
instance, see Fig. 8C1, users can click the first three columns
(two fragment columns and a correlation column) to view a
sub-pattern, such as the correlated portion of a query. However,
some combinations may not be valid (Fig. 8C2), that is, when
relations and fragments are linked incorrectly, patterns may be
meaningless. Therefore, RelaQ employs an auto-combination
mechanism to ensure meaningful sub-patterns are grouped.
When users combine any two fragments, RelaQ will find
all relations and fragments between these two fragments and
combine them all. As shown in Fig. 8C3, when the user clicks
on the two end fragments, all the fragments and relations that
connect them in between will be combined.

The time view (Fig. 9) consists of three parts arranged from
left to right. First, as the default timebox has not been specified
with a name, RelaQ presents a list of time series (Fig. 9A) that
can be used to complete the default timebox. For example, SF-
default can be completed with either SF-LA or SF-SD, and
both LA and SD will appear in the list. The opacity of each
item in the list encodes the average matching score (divided by
the highest one) when completing the default timebox with that
particular time series. If a time series is selected to complete
the default timebox, it will be highlighted like Fig. 9A1.
Second, the structure overview of all results is visualized as
a node-link graph (Fig. 9B). The thickness of lines encodes
the average strength of such relations. We also visualize the
time lag distribution between two fragments. Third, the time
series involved in the queried results are visualized with line
charts in different rows (Fig. 9C). An area chart on the top
shows the temporal occurrence of the results. Matched time
fragments are highlighted in the line chart to make the matched
pattern clear. Users can zoom in on each result to obtain details
(Fig. 9D). RelaQ adopts the same timebox visualization as the
input panel for visual consistency and easy comparison.

Justification. There are many approaches supporting com-

Fig. 9. The visual design of the time view. (A) is the list of alternative time
series matching the default timebox in the decreasing order of its average
matching score. (B) is an overview of all results. (C) is the distribution of
results and raw time series. (D) shows the detail level of a result.

parison of node-link graphs according to Beck’s survey [40].
We evaluate two types of visualization techniques, namely
juxtaposed and dismantled graphs. In juxtaposed graphs
(Fig. 8D1), each sub-pattern is presented as a column, while in
dismantled graphs (Fig. 8D2), nodes and relations are split into
separate columns. Many visual analytics applications employ
juxtaposition techniques (e.g., [35], [66], [67]), which is useful
for comparing subgraphs. However, juxtaposition techniques
suffer from scalable problems and do not allow adjusting the
weight of nodes and links. Thus, we adopt dismantled graphs.

E. Providing Recommendations

The guidance panel instructs users when they want to
perform a breadth-oriented query (R3). It provides alternative
timeboxes that can be added to an existing query, just like
the “related searches” module in the bottom of a search
engine results page. The guidance panel supports displaying
relevant timeboxes that can be added to the existing query and
comparing alternative timeboxes.

Visual design. Presenting all recommended timeboxes si-
multaneously may not be feasible due to the large number of
potential recommendations. To address this issue, we propose
a solution that involves the provision of recommendations
on demand. First, we require users to specify their “focus
timebox” (Fig. 10A) by hovering. We exclusively search for
time series that are relevant to the “focus timebox”. Second,
we employ a matrix-based design (Fig. 10B) to display all
recommendations. Each cell in the matrix represents an al-
ternative timebox that can be added to the existing query.
Cells within the same row pertain to a single time series,
while cells within the same column denote the same type
of relation. Users can click the icon in the column header
to sort timeboxes (Fig. 10C). We utilize a confidence-based
approach to determine the order of cells. Specifically, the
confidence is calculated based on the percentage of the relation
within the total recommended relations. This approach ensures
that recommendations are sorted based on their relevance and
usefulness to the user. The opacity of each cell encodes the
confidence, while the text means the strength. We allow users
to hover over a cell and check its preview (Fig. 10D).
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Fig. 10. The guidance panel’s design. (A) The focus timebox. (B) The
recommended timeboxes that can be added to the query. (C) The relation
icon that can be clicked to sort recommendations. (D) The preview of a new
query after hovering.

The recommendation algorithm. This explicitly features
three relation types: similarity, correlation, and causality,
which we selected based on their complexity and dynamic na-
ture. Besides, the relation lag is also recommended implicitly
with these three relations. We adopt a statistical recommen-
dation algorithm. A group of time series related to the “focus
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timebox” were selected from pre-calculated relation indexes.
RelaQ then evaluates each time series by enumerating lags and
summarizes the average strength and confidence. Finally, the
top 20 time series with the highest confidence are displayed.
Relations, including meta and arithmetic, were not included in
the analysis due to their complex possible scenarios and large
search space, which can significantly impact the algorithm’s
time performance. Moreover, compared to other relation types,
they are not commonly queried. Thus, RelaQ does not support
recommendations for meta and arithmetic relations.

V. CASE STUDY

This session is divided into three stages: [20 min] a 15-
minute tutorial and 5 minutes free exploration, [50 min] Free
relation-driven retrieve of time series based on real-world
dataset (Q-Queries, R-Results), following the think-aloud pro-
tocol [68], [10 min] a final one-to-one expert interview. The
aim of the case study is to (1) evaluate the effectiveness and
usability of RelaQ and (2) collect feedback from experts.

A. Case 1: Analyze the relation between brain regions

We invited Expert A (female, EA), who has four years of
experience in analyzing EEG data. EA aimed at figuring out
how the correlation between two brain regions changed after
drinking when humans were exposed to two matched stimuli.

Dataset. This case study is based on an EEG Database data
set, which includes the control group data and the alcoholic
group data. Each group tests eight subjects under two matched
stimuli and collects signals under 256 Hz in a second. To
reduce noises, we average multiple results from the same
subject under the same condition. The final data set has 122
* 256 = 31,232 samples and a size of 275KB. Fp1, Fp2, Fpz,
and AF7 are electrodes. (c: common, a: alcoholic)

Q1. Query which electrodes correlated with Fp1 before
drinking. EA first loaded the data and adjusted Sampling
Length (5) and Box Length (100). The difference between
time series of Fp1-c and Fp1-a (Fig. 11A) attracted EA as
it indicated that alcohol affected Fp1. Thus, EA began to
query the electrodes correlated to Fp1 before drinking. She
created two timeboxes, identified one as Fp1-c, and kept the
other as default. Then, she selected correlation and clicked
two timeboxes to link them. EA set the threshold as [0.995,1]
according to domain knowledge, as shown in Fig. 11B.

R1. Explore how electrodes correlated with Fp1 before
drinking. EA found there were three time series in the results
(Fig. 11C), including Fp2-c, Fpz-c, and AF7-c. She said that
it was reasonable because Fp2 and Fpz were in the same
region with Fp1, while AF7 was close to Fp. The result was
in line with her expectations. Furthermore, when EA inspected
details, she found that results with a high matching score of
AF7 were most in the right peak segment (Fig. 11D). This
phenomenon inspired her that the effect might vary in the
peaks and troughs. Thus, EA filtered the results and found
that results with high correlation were mainly distributed in the
peaks for all three pairs of electrodes. She said it indicated that
these three pairs of electrodes show synergy to this stimulus
and the peak might represent the response.

Default
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Fig. 11. This displays Q1 and R1 for the first case. (A) The time series of
Fp1-c and -a. (B) Query time series correlated to Fp1-c. (C) Results include
FPZ-c, FP2-c, and AF7-c. (D) Results mainly distribute in the second peak.

Q2. Query the pattern of correlation changes after
drinking. Next, EA continued to query how the correlation
strength between Fp1 and other electrodes decreased after
drinking. She created a timebox labeled Fp1-a, linked it to
a new default one, and set the correlation relation constraint.
Then, EA added the meta relation constraint of two default
timeboxes. This requires that two timeboxes (Fig. 2D1 and
D2) be from the same electrode (Fig. 2D3). D1 has a high
correlation with Fp1-c, while D2 has a low correlation with
Fp1-a (Fig. 2D4 revert matching finds minimum value). Thus,
the query selects the electrode whose correlation with Fp1
decreases the most. The query is shown in Fig. 2D. After a
few seconds, EA found that Fp2, Fpz, and AF7 were still in
the results, and Fp2 was affected most (Fig. 2E). EA scrolled
to inspect several results. EA said, “The seriously decreased
correlation strength between Fp1 and Fp2 may indicate some
some asymmetrical impacts.”

R2. Explore differences between the peak and the
trough. Inspired by the observation in the second step, EA
further analyzed whether the difference between the peak
and the trough still existed. Thus, she checked the results’
distribution in the Fp1-Fp2 pair. EA filtered results with higher
matching scores and found the time range of the peak was
highlighted obviously (Fig. 2F). The Fp1-Fpz and Fp1-AF7
pair had the same visual pattern, which EA thought was
interesting. It revealed that the peak region was affected the
most. To investigate details, EA observed time series in the
analysis panel. She found that the peak appeared delayed in the
alcoholic group (Fig. 2G). Till now, EA could summarize some
preliminary results. She added, “The correlation between Fp1-
Fp2 decreases most and the peak delays reveal that alcohol
may affect balance ability and reaction speed, respectively.”

B. Case 2: Explore the relation of air pollution between cities
in the North China Plain

Analyzing air quality time series is a popular and important
topic [35], so we invite Expert B (male, EB), who has five
years of experience in analyzing urban air data. Many efforts
have been devoted to protecting the environment in the North
China Plain, which is a densely populated area and constantly
affected by air pollution. Since Beijing was one of the most
important monitoring sites located there, EB explored the air
pollution patterns involving Beijing.
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Fig. 12. 4 queries and results in Case 2. (A) How does Beijing’s surroundings affect it? (B) How does Beijing affect its surroundings? (C) What are the
differences in pollution transmission from Beijing to various directions? (D) What is the pattern of cascading propagation from Zhangjiakou to Beijing?

Dataset. The dataset collects the PM2.5 concentration from
448 air quality monitoring sites in China. Each site records
hourly between Jan 1st and Dec 20th, 2018. This dataset has
448 ∗ 8, 472 = 3, 795, 456 records and a size of 11.4MB.

Q1R1. Query how surroundings affected Beijing. The
Sampling Length (4H) and Box Length (24H) were adjusted
at the beginning. First, EB was curious about how air pollution
spread from surrounding cities to Beijing. EB added a timebox
A (Default) and a timebox B (Beijing1), and clicked the
causality icon to connect them. He then dragged B nearly
to the half of A because the delay in propagation might be
up to 12 hours depending on the wind speed. Since EB was
interested in when the air pollution index is rising, he sketched
a trend in timebox B referencing the trend guidance. The query
is shown in Fig. 12A1. After a few seconds, 237 results in total
have been displayed on the screen. EB found that Beijing was
affected throughout the year and the peak occurred in May
and October (Fig. 12A3). He explored which cities affected
Beijing most. The order of alternatives (Fig. 12A2) revealed
that Beijing has been affected by air pollution from the north
(Zhangjiakou) more seriously than the south (only Langfang).

Q2R2. Query how Beijing affected surroundings. EB
then wondered how Beijing’s air pollution had spread, so he
adjusted the query (Fig. 12B1). There were 843 results, which
was nearly four times more than the last one. Peaks occurred in
February and April (Fig. 12B3). EB explained that with some
effective environmental governance measures like the use of
new energy, the current source of air pollution has mainly
become urban traffic pollution. Through the alternative list

(Fig. 2B2), EB further found that the air pollution transmitted
from Beijing mainly to the south (Tianjin, Baoding) and the
east (Qinghuangdao) but hardly to the west. EB explained that
the western mountains blocked pollution from spreading from
Beijing to the northwest regions with higher elevations.

Q3R3. Compare the spread of air pollution in differ-
ent directions. Inspired by the observations in Q2, EB was
interested in the differences between patterns of air pollution
propagation from Beijing to different directions. He configured
Timebox A as Tianjin (southeast) and Timebox B as Baoding
(southwest) (Fig. 12C1). To compare these two propagation
patterns, EB grouped two subgraphs involving Tianjin and
Baoding, respectively. He found that the results were mainly
distributed in spring for both cities (Fig. 12C2,4). Moreover,
Tianjin was hardly affected in summer (Fig. 12C3) but Baod-
ing was affected nearly throughout the whole year. EB said that
the results were in line with climatic characteristics, “Because
of monsoon factors, the wind blows from Tianjin to Beijing in
summer, so there is less pollution coming to Tianjin.”

Q4R4. Query cascading propagation involving Beijing.
EB investigated the chain of air pollution propagation from
northwest to Beijing and its effects. He removed Baoding and
added Zhangjiakou (Fig. 12D1). EB clicked the guidance icon
to find cascading effects. After the recommended queries were
shown, EB triggered the sorting in the guidance panel and
found Yantai had the highest average strength with the highest
confidence (Fig. 12D2). Thus, EB added Yantai to the existing
query (Fig. 12D3). In the results, the distribution showed that
the cascading air pollution patterns mainly occurred in April

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3397554

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

(Fig. 12D4). EB inspected several results with the highest
matching score (Fig. 12D5) and found that they aligned with
his expectations. These findings suggest the possibility of long-
range air pollution transmission from Zhangjiakou to Yantai
in spring, emphasizing the need for preventative measures.

C. Expert Interview

After the experts finished analyzing the real-world dataset,
we followed a semi-structured questionnaire to collect their
feedback on effectiveness, usability, and improvements.

Effectiveness and visual designs. Both EA and EB spoke
highly of RelaQ and confirmed its effectiveness and intuitive-
ness. EA commented it was intuitive to formulate her queries
through RelaQ. “Functions including relation interactions,
sketches, and default constraints support complex queries,
which can cover massive analysis scenarios that previously
had to be done by writing scripts,” she said. EB noted
RelaQ as “useful” since existing important patterns, such as
cascading propagation or ego-network effects, can both be
queried easily. Moreover, EA and EB praised the matrix view
in filtering, grouping, and comparing desired patterns, saying
it was “flexible” and “powerful”. In addition, EB commented
the guidance was helpful, saying “It helps me quickly narrow
down my choices from a huge number of sites.”

Usability and improvements. Though EA and EB agreed
that RelaQ had good usability, noting that interactions and
designs were “fluency” and “expressive”, they also gave many
suggestions on improving RelaQ. EA recommended adding
distribution visualization of parameters in the query panel to
guide users in setting initial queries. EB suggested that we
should highlight how the trend matches and support adding
time series in the result view on demand. We have optimized
RelaQ based on their suggestions.

VI. USER STUDY

We conducted a task-based user study to evaluate the
usability of RelaQ and collect usability feedback.

A. Experiment Settings

Participants and Data. We recruited twelve participants
(S1-S12, six males and six females) from different depart-
ments, including Computer Science (6), Traffic Engineering
(1), Electronic Engineering (1), Mathematics (1), Industrial
Design (1), Media (1) and Sports Science (1). All subjects
were familiar with time series data, with an average self-
reported score of 3.5 on a 5-point Likert Scale. Among them,
7 subjects had experience using tools to query or explore time
series data, including Python, Microsoft Excel, MATLAB,
and Unity. None of the subjects have been involved in the
development of RelaQ. In this study, we use a dataset (142
time series * the length 5,000) collected from a real factory.

Procedure and Tasks. The experiment lasts about 50
minutes and includes the following steps. First, subjects were
presented with a 15-minute tutorial on the background of
time series query and the visual encodings and interactions
of RelaQ. Then, they freely used the system for 5 minutes.

Afterward, subjects were required to complete nine tasks. All
tasks were designed to evaluate RelaQ’s different functions,
including specifying queries (R1), understanding results (R2),
and exploring possible relations (R3). We ensured that all
interactions and visual encodings were covered during the
process. We divided these tasks into the following two stages
according to the type of queries summarized in Sec. III-B3.

• Stage 1. Query target relations (R1, R2). Subjects are
required to specify queries (R1) and answer questions
(R2). We asked subjects to design three queries and
answer questions (T1-3) with different levels of difficulty.

• Stage 2. Explore possible relations (R2, R3). Subjects
are required to explore possible relations (R3) and answer
questions (R2). We asked subjects to explore based on
recommended series (T4, T7) and trends (T5-6) and
understand results (T8-9).

Subjects are asked to follow the think-aloud protocol [68].
Their completion time, behavior, and answers were all
recorded. After completing tasks, subjects were required to fill
in a post-test questionnaire based on System Usability Scale
(SUS) [69] with a 5-point Likert scale. Finally, we conducted
a semi-structured interview about their experience of using
RelaQ to collect feedback.

B. Quantitative Results

To faithfully reflect how users completed tasks using RelaQ,
we counted the completion time and the pass rate. We consid-
ered a subject as passed when he/she fully understood the task,
performed reasonable operations, and answered correctly.

Most subjects passed tasks successfully, with an average
passing rate for all tasks of 0.98. There were two failures
in total: S4 failed Q2 because he misunderstood the task
description and deleted a relation constraint that should have
existed; S11 failed Q4 because he confused causality and
correlation, resulting in adding a wrong relation. For passed
cases, the completion time is summarized in Fig. 13A. The
time for the subjects to complete a task ranged from 9 seconds
to 163 seconds, with an average of 53 seconds. Specifically, S4
spent more time in Q3 than others because he misunderstood
the encoding of result distribution and browsed the results
repeatedly on the matrix panel. Overall, subjects took an
average of 7.8 minutes to answer all tasks.

The subjects gave a SUS score of 81.04 on average, and
a score above 80.3 is considered as the top 10% of scores
[69]. We also computed the detailed factors of SUS [70],
with a usability score of 85.16 and a learnability score of
64.58. Considering that the user study is conducted with non-
experts, the learnability is still within an acceptable range.
Besides, based on expert interviews in the case study, we argue
that the system is easy to learn and use for experts in the
field. Nonetheless, we plan to address the learning curve by
providing more comprehensive tutorials and guidance in the
future. Generally, subjects highly evaluated the consistency of
system design. Most of them agreed that RelaQ is convenient
to use and are willing to use it in the future. The details of
the subjects’ scores are shown in Fig. 13B, and we summarize
their detailed feedback in the following section.
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Fig. 13. The quantitative results of our task-based user study. (A) The record
of completion time reveals a high task pass rate and varied difficulty. (B) We
summarized the distribution of SUS scores given by subjects. In general,
subjects commented positively on the usability of RelaQ.

C. Qualitative Usability

We summarized subjects’ feedback in terms of query, under-
standing, and guidance and improved RelaQ correspondingly.

RelaQ enables easy formulation of query constraints
(R1). All subjects edited queries smoothly and confidently
without confusion. Specifically, S4 pointed out that sketches
are consistent with his intent, enabling him to draw desired
trends easily. In terms of relations, S2 thought that the inter-
action of the relation query was very straightforward, as she
could directly pick desired relations. S10 stated that relation
interactions require a low mental burden, even when specifying
complex queries. S7 appreciated smooth interactions: “I can
check the changes of trends in real-time with animation
while editing the query.” While subjects agreed with the
intuitiveness, they also noted some limitations and suggested
some improvements. S4, S6, S9, and S11 commented that the
interactions and visual encodings used in specifying queries
cause a little memory burden. S4 suggested hiding unnecessary
buttons at the beginning and adding guided labels.

RelaQ supports comprehensive understanding of query
results (R2). Subjects found that RelaQ facilitated their
understanding of query results. S8 appreciated the node-
link diagram’s ability to show the abstract of the query and
quickly convey the distribution of searched results: “It helps
me quickly learn the distribution of searched results, such
as whether a certain relation has matched a result.” S6
highly valued the combination feature for filtering subgraphs
flexibly. Some subjects, especially those (S3, 6-7, 11) who
were familiar with native LineUp [49], raised their concern on
the graph-based design. S3 expressed that he was not confident
about the results of auto combination: “When I was not so
proficient in using RelaQ, I was not sure how the intermediate
paths of node A and node B will be joined after combining
them.” They commented that the graph-based design and auto
combination were completely unfamiliar interactions for them,
resulting in their lack of confidence at the beginning. However,
they also agreed that it can be fully mastered after a few
minutes of training. S6 commented: “The auto combination
is very convenient. I can combine a subgraph by selecting
the start and end nodes only.” S11 also stated that integrating
graphs into LineUp is novel and useful in practical cases.

Guidance effectively reduces the mental burden of

exploration (R3). S5 highly appreciated recommendation:
“Guidance effectively helped me find possible patterns, though
I don’t know much about domain knowledge.” Other subjects
also gave positive comments, such as “effectively help narrow
down search space” (S9), and “smart guidance” (S12). S10
expressed a strong preference for the guidance and success-
fully used it to query in a non-standard workflow, achieving
the correct result. S10 was the only participant to use the
guidance during the target-oriented query evaluation stage.
However, some limitations were noted. Specifically, S6 and S7
commented that the guidance should be automatically updated
as queries are edited rather than requiring the user to click a
corresponding button, which was perceived as inconvenient.

VII. DISCUSSION

In this section, we discuss the implications, limitations, and
future work of RelaQ.

Implications. This study systematically discusses the scope
of relations between time series, taking the first step to explore
the heterogeneous relation-driven approach of querying multi-
ple time series. RelaQ models the query problem as a graph-
matching problem, not only concentrating on the sequential
features of single time series but also on the structural features
of multiple time series. We propose a novel approach that
combines a fuzzy query model and an interactive interface to
support the direct and flexible specification of relations among
time series without ambiguity, the in-depth understanding of
queried temporal patterns, and reliable exploration of new
queries. Through a series of evaluations, RelaQ was verified as
useful for solving real analysis problems in multiple domains.

Limitations and future work. We collected valuable sug-
gestions from users and optimized RelaQ. There is still room
for improvement in the long run, especially the trade-off
between advanced functions and learnability and the concern
about the scalability of the matching algorithm.

Support flexible relation computation. Although we have
chosen commonly used computations for each relation, experts
prefer optional algorithms (EB) or even modifiable code blocks
(EA) in extremely professional analysis tasks. On one hand,
RelaQ will become more powerful with the integration of
modifiable computation. On the other hand, such integration
can increase the learning curve and mental burden for users.
Considering that RelaQ is our initial attempt at the relation-
driven query of time series, we try to avoid excessive learning
costs to encourage user adoption of this new query framework.
Thus, these advanced functions are left as future work.

Integrating retrieval with intelligent pattern mining. The
time complexity of the algorithm is nearly O(kN2M ), where
k is the number of relations, N is the number of variables,
and M is the length of time series. A simple reduction of the
complexity is discussed in Appendix 4.1.3. This means the
time costs highly depend on the data scale. Unfortunately,
when the scale of the time series reaches 108, there is a
noticeable lag in use. We tested the time performance of
RelaQ, and the results showed that it has good real-time
performance in most cases. The average response time for
queries of medium size and difficulty is 1.38s. More details
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can be found in Appendix 4.1.2. Besides, RelaQ requires
users to specify the match parameters: the box length and
the sampling length, which means RelaQ cannot perform
free-scale matching. A proven effective approach to solving
similar search problems is integrating intelligent pattern
mining models. Since RelaQ meets users’ requirements in
most daily analysis situations, we will enhance our model in
the future by integrating intelligent approaches.

VIII. CONCLUSION

In this study, we conduct formative research to develop a
semantic scope of time series relations and propose a novel
approach for easy relation-driven time series queries through
a prototype named RelaQ. Evaluations include a quantitative
user study and qualitative case study, demonstrating that RelaQ
enables intuitive query and understanding of multiple time
series with heterogeneous relations, allowing users to easily
formulate complex queries through explicit relation interac-
tions and sketches. RelaQ is effective in real analysis tasks
such as urban air pollution and EEG correlation analysis. As an
initial attempt at relation-driven time series queries, our future
work will focus on optimizing RelaQ by integrating intelligent
modules and adapting to more professional scenarios.
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