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Fig. 1: This is a new human-machine-collaborative workflow of root cause analysis in cloud computing systems and an interactive
visual analysis system named RCInvestigator. The workflow includes four stages: (A) building, (B) monitoring, (C) reasoning, and (D)
concluding. Two agents collaborate via RCInvestigator, consisting of building, monitoring, and investigation boards.

Abstract—Root cause analysis (RCA) is critical for maintaining the availability and efficiency of cloud computing systems. However,
identifying root causes from the large-scale, high-dimensional monitoring data generated by these complex environments is a significant
challenge. Current approaches often rely on time-consuming manual analysis to ensure flexibility and reliability, while recent automated
methods lack the crucial insights provided by domain experts. To bridge this gap, we propose RCInvestigator, a visual analytics
system that facilitates interactive root cause investigation by establishing a tight collaboration between human experts and machine
analysis. Our approach addresses three key challenges: a) modeling databases for the root cause investigation, b) inferring root
causes from large-scale time series, and c) building comprehensible investigation results. We demonstrate the effectiveness and utility
of RCInvestigator through two real-world case studies, which received positive feedback from domain experts.

Index Terms—Complex system visual diagnosis, root cause analysis, time-oriented data, cloud computing systems

1 INTRODUCTION

Cloud computing has emerged as a pervasive infrastructure technology,
profoundly influencing a broad spectrum of application domains [19,
22]. As the significance of cloud computing systems escalates, its
anomaly management becomes imperative since irregularities not only
pose potential security risks and performance issues [40] but can also
lead to substantial economic losses [55, 56]. Despite this urgency,
root cause analysis (RCA), a critical aspect of anomaly management,
continues to pose a significant challenge.

RCA is a reactive diagnostic process used to determine what caused
a system anomaly and how it propagated [36]. Its goal is to guide
engineers in rectifying the immediate fault and preventing future re-
currences [20]. Unlike monitoring (e.g., Grafana, Splunk) or anomaly
detection, which flag a symptom (a surge in failed user requests), RCA
investigates the underlying cause (cluster resource exhaustion). This
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is challenging because a single symptom can stem from disparate root
causes. For example, a network misconfiguration can also cause a failed
spike, but requires a distinct mitigation. Pinpointing the true causal
pathway is therefore a non-trivial task demanding domain expertise,
especially given the architectural complexity and vast data volumes.

Numerous researchers are endeavoring to resolve the RCA problem.
With the volume of data becoming extremely large, many methods
leverage machine learning techniques, such as graph mining [4, 9] and
logistic regression [8, 39], in identifying potential causes, effectively
answering the question of what causes a given anomaly. However,
machine-learning-based approaches are limited in explaining how the
root cause exerts its influence due to its black-box nature. The sparsity
of (anomaly, root cause) pairs also significantly limits the learning-
based methods. Consequently, the prevalent RCA practice employed
in the industry is predominantly dependent on labor-intensive manual
processes. Engineers typically run a series of database queries to gather
relevant factors, analyze potential root causes, and deduce conclusive
results. Such an analytical procedure is inherently time-intensive, fre-
quently spanning several hours to multiple days to finalize.

The limited efficiency of manual RCA and the poor interpretability of
“black-box” learning methods raise an urgent need for an approach that
synergizes human expertise with automated analysis. Visual analytics
is particularly well-suited to bridge this gap by enabling powerful
human-in-the-loop investigation. Drawing on insights from existing
visual analytics (VA) studies on cloud computing [32, 62], we propose
an approach that synergizes human-machine collaboration. However,
since VA for RCA is emerging, a successful solution must be grounded
in the practical realities. To identify these, we conducted a six-month
study with domain experts following Sedlmair et al.’s methodology [45].
Based on empirical findings, we identified three core design challenges.



C1:Modeling complex factor relations for root cause investiga-
tion. Investigating cloud anomalies requires modeling relationships
between factors dispersed across multiple platform components. This
is challenging not only due to the scale and complexity of the data but
also because the nature of these relationships is dynamic. For example,
the relation between a user and a virtual machine could be one of
allocation for a capacity anomaly or access for a security anomaly.
Therefore, an interactive modeling approach is needed to incorporate
expert knowledge and adapt to different analytical intents.

C2:Inferring obscure root causes from large-scale time series.
Anomalies often manifest as spikes or drops in a key performance indi-
cator (KPI) time series. Identifying the root cause requires correlating
this KPI with temporal changes in other factors. This presents a dual
challenge: analysts must first identify the few relevant factors from a
massive dataset, like finding needles in a haystack; and then conduct
a comprehensive analysis to understand their relationships and influ-
ence. Therefore, the proposed approach should not only be capable of
detecting relevant factors but also providing reasoning support based
on massive time series data.

C3:Building intuitive presentations of intertwined investigation
findings. Creating intuitive presentations of investigation findings is
essential for enabling timely action and transforming them into reusable
knowledge, transcending the current practice of copy-pasting raw query
results. However, the fundamental challenge lies in synthesizing this
complex and often non-linear investigative process into a single, co-
herent representation. Distilling the intricate web of influence links,
analytical steps, and expert insights into an intuitive and communicable
form, without losing critical context, is a formidable barrier to trans-
forming raw investigation findings into actionable, reusable knowledge.

In this study, we collaborate closely with the experts from a large
cloud service provider and propose an interactive investigation frame-
work based on human-machine collaboration for RCA. Our framework
comprises four stages: building, monitoring, reasoning, and concluding,
and respectively delegates different tasks to the human and machine
agent (see Fig. 1), whereas the machine agent is responsible for la-
borious data collection tasks and the human agent is responsible for
decision-making. First, knowledge graphs are employed to model the
complex factor relationships across multiple data sources. Then, we
design intuitive visualizations and a layout algorithm to organize the
factors reasonably for visual analysis. Finally, we summarize two types
of reasoning interactions and design corresponding reasoning models
to enable steerable reasoning in finding the root causes of anomalies.

Our main contributions are listed as follows.
• We identify the tasks for analyzing anomaly root causes in cloud

computing systems and formulate a human-machine-collaborative
root cause investigation framework.

• We propose a novel knowledge-graph-based interactive approach
for root cause analysis and develop RCInvestigator, an interactive
system that supports steerable reasoning of the root causes.

• We evaluate RCInvestigator with two cases based on a real-world
dataset and collect feedback from experts.

2 RELATED WORK

2.1 Root Cause Analysis
Root cause analysis is a critical task in anomaly management, with
extensive literature spanning both general surveys [20, 49] and specific
domain reviews (e.g., software [57], industry [16]). Our work focuses
specifically on RCA within IT operations for large-scale cloud environ-
ments. According to Natoro et al. [36], we discuss two categories: root
cause localization (what) and root cause diagnosis (how).

Localization studies aim to pinpoint the system components harbor-
ing the root cause. These approaches primarily fall into two categories:
machine-learning-based approaches [4, 28] that build inference models,
and search-based strategies [30, 34, 35, 46] that leverage the correlation
of Key Performance Indicators (KPIs) and employ search algorithms
along with pruning techniques to expedite the localization process.

Diagnosis studies seek to elucidate the pathways that cause pre-
cipitate anomalies. Some researchers employ machine learning tech-
niques [9–11, 27] to categorize and explain common root cause mech-

anisms. However, the effectiveness of these models is often limited
by data sparsity and a predefined set of category labels. Additionally,
other researchers trace anomalies on the established graph to facilitate
the diagnostic process. The built graphs include topology graphs [23],
causality graphs [9, 10], and knowledge graphs [67]. The walking
strategies can be Breadth-First-Search [25], Markov analysis [44], KPI-
correlation-oriented [51], and random walk [60].

While automated RCA offers efficiency, it often lacks the explainabil-
ity and controllability essential for real-world applications, and current
research typically focuses on specific components. RCInvestigator
introduces a human-machine collaborative framework that leverages
machine-scale data processing alongside human reasoning and control.
This approach aims to not only locate root causes across system levels
but also explain their impact.

2.2 Time-oriented Data Visualization

Numerous studies discuss temporal data visualizations from different
perspectives, such as general time-oriented data [1, 2], discrete sequen-
tial events [6, 18], and continuous time series [15]. Data from cloud
environments are primarily linear, consisting of event intervals and
time-stamped states. As understanding the relations between these
events and states is fundamental to RCA, we mainly discuss techniques
for visualizing event sequences, time series, and their interrelations.

For visualizing time-oriented data, techniques can be categorized
into three types: chart-, timeline-, and tree-based. Chart-based meth-
ods (e.g., RetainVIS [24]) visualize the distribution of event or point
instances by basic bar charts or scatter plots. Timeline-based tech-
niques (e.g., PlanningVis [50], VIVA [7]) present the order of events
and values consistently along a timeline and emphasize the temporal
features. Tree-based methods usually display the aggregation patterns
(e.g., VisRuption [42]) or the hierarchical patterns (e.g., VizTree [26]).

For visualizing relations and evolutions, there are general techniques
and special designs. General high-dimensional data visualizations
(e.g., PCP [52]) display relations between different attributes but fail to
describe temporal features. Special-design plots (e.g, [3, 37, 58]) intu-
itively reveal the evolution but are for events or time series specifically.

Based on extensive literature review, RCInvestigator adopts the most
easy-to-understand visualizations: Gantt charts for event sequences and
line charts for time series. We further design visualizations and frame-
works that intuitively highlight the relations among event sequences
and time series, supporting RCA tasks.

2.3 Complex System Visual Diagnosis

Complex system visual diagnosis integrates intuitive visual represen-
tations, flexible interactions, and effective models to enable a compre-
hensive understanding of failures and large-scale data. It is effective
in solving complex systems problems, covering various domains, like
industry [61, 68], urban computing [13], and dynamic network anal-
ysis [5, 48, 54]. We discuss aspects of pipeline risk management via
the lens of a general workflow [33], specifically addressing monitoring,
anomaly detection, and root cause analysis.

As for monitoring, the main challenge of visualizing such data
is to organize large-scale and high-dimension data reasonably. The
commonly used visualization techniques include static and dynamic
ones. Many static approaches not only utilize cluster algorithms [47]
but also adopt high-dimension visual representations, such as small
multiples [14, 32]. Dynamic approaches introduce interactions (e.g.,
Traveler [43], XR [59]) and animations (fish eyes [64], dynamic PCP)
in visualizations and enable level-of-detail displaying, making the
monitoring process more flexible than static ones.

Visual analysis has been proven effective for anomaly detection
across multiple domains [65, 69]. In the industrial sector, ViDX [63]
highlights anomalies using Marey charts, while ECoalVis [29] enables
interactive extraction of anomalies with trend events. In software analy-
sis, CloudDet [62] employs clustering algorithms and glyph-based visu-
alization for multidimensional anomaly detection, while GRANO [53]
locates anomalous components by a knowledge graph. ViSRE [21]
uses causal inference to predict anomalies proactively.



Despite visual analysis’s utility in failure management, interactive
root cause analysis for complex systems remains underexplored. Com-
pared with anomaly detection, RCA not only requires for locating the
cause but also emphasizing explaining how the cause intrigue anomalies.
Therefore, we propose and develop the RCInvestigator framework.

3 PAIN POINTS ANALYSIS

In our study, the method development involved an iterative design
process that was guided by Sedlmair et al.’s design study methodol-
ogy [45]. Such a design process unfolded over six months and involved
three steps:(1) We conducted a comprehensive review of existing com-
mercial tools and visual analytics systems to understand the current
research landscape; (2) Over the following two months, we engaged
in multiple interview sessions with four domain experts (EA-ED) to
obtain their nuanced insights and summarized pain points and user
requirements in the RCA processes; (3) In the final three months, we
engaged in an iterative design process, completing three rounds of
refinement. Starting with a general design, we incrementally opti-
mized it through four versions, focusing on visualization simplification,
interaction exploration, plot layout, metaphorical enhancement, and
knowledge modeling. This process involved using scenario-based dis-
cussions with competing mockups to methodically resolve conflicting
expert feedback. Our goal was to ensure the final system design was
user-centric and aligned with expert feedback. Details of iterations and
expert comments are presented in the supplementary material. All of
the experts were employed by a leading cloud computing provider. EA
(female) and EB (male) were data scientists with years of experience
in conducting cloud platform incident analyses, while EC (male) and
ED (male) were senior researchers specialized in AIOps, facilitating IT
operations in cloud computing systems with AI-based approaches.

3.1 Motivating Usage Scenario

During months of collaboration with experts, we have gained insights
into the process of analyzing root causes in cloud computing systems. In
this section, we illustrate the limitations of existing workflows (Fig. 2)
via a representative scenario. Consider an analyst, Sabrina, tasked with
prioritizing unresolved incidents from an office automation system.

First, Sabrina reviews the incident alert list. She struggles to take the
first analysis step because there are so many KPIs conveying incidents.
Typically, she generates some line plots to visualize data center-level
metrics, aiding her selection of an entry point. However, this requires
her to first merge similar alerts and write individual query scripts
for each. Sometimes she can copy and paste existing query scripts
and make a little modification if the incident only involves frequently
investigated components. Otherwise, she spends a long time writing
new KPI queries. Sabrina visualizes each queried metric and selects
one to start the investigation (P1.1: cumbersome alert consolidation).

After narrowing her focus to several specific metric spikes, Sabrina
starts hunting for the cause, but the fragmented nature of the system
complicates her investigation. To trace the anomaly, Sabrina uses her
experience to write custom database queries targeting common clues
(e.g., cluster load, user traffic spikes). She runs these queries, studies
the results, and forms new guesses to test (P1.2: cumbersome clue
collection). However, each query returns hundreds of irrelevant results,
forcing her to repeatedly refine her filters, a slow and risky process
because she is not sure which variables truly matter and should make
decisions carefully based on her knowledge (P2.1: heavy mental strain
from numerous ambiguous variables). Worse, some clues confuse
her (e.g., unusual API error codes), as her knowledge of the whole
complex computing system architecture is limited. When this happens,
she emails other teams (e.g., network ops, developers) to ask for help,
organizes discussions, and starts new queries based on their feedback
(P2.2: heavy mental strain from knowledge gaps in vast architectures).
Additionally, Sabrina often references similar historical investigation
results from other analysts. However, since these records typically
capture only outcomes rather than the complete investigative process,
she spends additional time reconstructing context to proceed effectively
(P3.1:hard-to-share insights missing context).

Finally, Sabrina compiles an RCA summary by sifting through scat-
tered query results, emails, and interview logs from the investigation.
As it is difficult to trace back all key clues, she only manually picks
out necessary results and organizes them into a shared forum with
notes explaining their relevance (P3.2:hard-to-form context-aware
investigation results).

We identified three pain points in such a workflow.
P1. The collection process of potential clues is cumbersome. Analysts

need to write query scripts manually to retrieve relevant data from
databases, but it is hard to have a comprehensive understanding
of such complex and large-scale databases. Furthermore, there is
much repetitive work like writing numerous similar and lengthy
scripts, making the process time-consuming and labor-intensive.

P2. The reasoning process causes a heavy mental burden. Analysts
must delve into the collected clues and compare them one by one
to make inferences, which incurs a high memory cost. Moreover,
existing representations of clues are mainly raw tabular data,
which is not intuitive, causing additional cognitive difficulty.

P3. The investigation results are hard to share. Current analysis sum-
maries are mainly composed of scattered information like text and
query results, which fails to present the analysts’ reasoning logic
in an organized and intuitive manner. Additionally, the arbitrary
format of the results makes it difficult to share the knowledge.

We distilled pain points into three corresponding design challenges
(C1-C3), which were introduced from design-level perspective in Sec 1.

4 WORKFLOW AND TASK ABSTRACTION

To address the pain points (P1-P3) and identified design challenges
(C1-C3), we designed a human-machine collaborative workflow.

4.1 RCA Workflow
Our main ideas include:(1) delegating repetitive collection tasks and
computing tasks to the machine agent (P1); (2) abstracting reasoning
logics into direct interactions and intuitively visualizing the reasoning
process (P2); (3) building all these in a structured format to facilitate
sharing (P3). The new workflow (Fig. 1) has one preparation stage
(building), three investigation stages (monitoring, reasoning, and con-
cluding) and two agents (human agent Ah and machine agent Am). This
design of workflow is grounded in our empirical findings and prior liter-
ature. While the typical Monitoring, Reasoning, and Concluding stages
are from literature [36], the Building stage and the human-machine task
division are derived directly from our expert feedback. The workflow
systematically addresses our three design challenges (C1-C3):

• Building (C1): a consensus that describes how two agents col-
laborate should be defined. It guides how to share knowledge
of databases, anomalies, and root causes. Ah dominates the def-
inition of consensus to ensure its interpretability and reliability,
while Am follows it to adapt data loading.

• Monitoring (C2): Am detects potential anomalies and alarms
users, and then Ah locates a detailed anomaly, whose root cause
users want to investigate.

• Reasoning (C2) is an iterative process. First, Ah proposes hy-
potheses based on the selected anomaly, and then Am executes and
recommends relevant clues from the dataset, which Ah validates

Fig. 2: Three stages of the existing pipeline: (A) Analysts screen the alert
list to select targets. (B) Analysts write scripts to query data, e-mail rele-
vant teams for additional information, and then reason potential causes.
They iterate until root cause found. (C) Analysts write a summary.



to confirm as evidence. New evidence can inspire the formation
of new hypotheses, repeating the cycle until the root cause is
found. There are two kinds of hypotheses: When Ah expands a
clue, Am collects as many relevant clues as possible to generalize
the analysis. When Ah refines a clue, Am drills down the clue and
eliminates unnecessary factors to detail the investigation.

• Concluding (C3): Ah summarizes final root causes, and Am gen-
erates structured and visual format of conclusions for sharing.

In the new workflow, Sabrina first loads and supplements the knowl-
edge base. With institutional expertise consolidated in the base, she
retrieves critical clues more independently. She then reviews a prior-
itized alert list augmented with contextual metric visualizations, en-
abling her to swiftly identify urgent anomalies. During reasoning, Am
autonomously ranks highly relevant clues, eliminating the need for
manual scripting. This allows Sabrina to focus entirely on decision-
making. Besides, Am merges and intuitively organizes clues, so Sabrina
can better control the investigation’s direction and depth. Finally, the
process is automatically documented in a structured, visual format.

4.2 Data and Concepts
This study is based on the data obtained from the cloud service provider
where the experts were employed. Data can span multiple sources, in-
cluding system-level, network-level, and application-level monitoring.

In the building stage, two anomaly types are involved:(1) Incident
logs record a log that a user failed to request resources. Each incident
log is a tuple of number and string; (2) Key performance indicators
record states of components and are numerical time series. Both anoma-
lies are detected by platform existing monitors.

In the reasoning stage, there are two clue types: (1) Time series:
record numerical changes in components and performance metrics;
(2) Event sequences: record categorical changes in options. Validated
clues are regarded as pieces of evidence. Data types include number (a
time series), string (an event sequence), set (multiple event sequences),
and bag (multiple time series).

4.3 Design Tasks
Based on three design challenges and the four-stage workflow, we
detailed user requirements into five design tasks.

T1. (Building) Build persistent investigation knowledge inter-
actively . The system must provide an interactive way for analysts
to build, edit, and persist their investigative knowledge about system
components and their relationships. This structured knowledge serves
as the foundation for the machine’s automated clue collection.

T2. (Monitoring) Obtain an overview of cloud computing anoma-
lies. The system must provide an interactive way for analysts to build,
edit, and persist their investigative knowledge about system compo-
nents and their relationships. This structured knowledge serves as the
foundation for the machine’s automated clue collection.

T3. (Reasoning) Extend analysis scope based on recommenda-
tions. This task focuses on the human agent’s role in reasoning. The
system must present machine-recommended clues in an interpretable
manner, allowing the analyst to validate them as evidence. Based on
this evidence, the analyst must be able to easily form new hypotheses
and direct the next step of the investigation.

T4. (Reasoning) Explore time-oriented data based on investiga-
tion knowledge. This task defines the machine agent’s role. Guided by
the analyst’s current hypothesis and the knowledge model, the system
must automatically search the vast dataset to collect and recommend
the most relevant causal clues. It should rank these clues based on their
correlation to the anomaly to intelligently prune the search space.

T5. (Concluding) Share intuitive investigation results. The sys-
tem must facilitate the creation of an intuitive and expressive summary
of the entire investigation. This involves capturing the final root cause,
key evidence, and reasoning steps in a structured format for sharing
and future reference.

5 RCINVESTIGATOR

Based on the workflow and tasks, we proposed RCInvestigator, an inter-
active approach for human-machine collaborative root cause analysis in

cloud computing systems. The system features a multi-page frontend,
a backend model, and a data store. The Vue [66] frontend consists of
three distinct pages corresponding to the workflow stages: Building,
Monitoring, and Investigation Board. The Flask [38] backend handles
knowledge processing, anomaly retrieval, clue recommendation, and
summarization The data store connects to the Kusto [31] databases and
manages data caches to ensure interactive performance. The following
subsections will introduce the system design for four stages.

5.1 Build Investigation Knowledge

To support the creation of persistent investigation knowledge (T1),
RCInvestigator utilizes a knowledge graph due to its flexibility and
expandability. This section details the knowledge graph model and the
design of the corresponding Building Board used to construct it.

5.1.1 Model investigation knowledge graph

A knowledge graph is typically defined by three components: entities,
relations, and attributes. To model existing investigation knowledge into
a knowledge graph, we map two categories of investigation knowledge
to these components:(1) Cause clues (what): anomalous attributes that
indicate potential root causes; (2) Reasoning logic (how): factual rules
that guide how to collect cause clues.

Cause clues. After observing many root cause examples, we found
that a cause clue can be defined as an observation on a tuple of (en-
tity, attribute, time range). For example, a root cause like “The nodes
of cluster A were exhausted during 2:00 to 3:00 so anomalies happen”
can be simplified to the tuple (cluster A, node count, 2:00-3:00). Be-
cause analysts typically investigate a fixed time range preceding an
anomaly, this model can be further simplified to (entity, attribute).
However, there are a large number of entities in cloud platforms, and
establishing a knowledge graph for each entity would be extremely
costly. Therefore, we abstract specific entities (cluster A) into entity
concepts (clusters). This creates a reusable knowledge graph blueprint,
which significantly reduces storage and modeling costs.

Formally, an entity concept ei belongs to the set of all concepts E
and has a corresponding set of attributes Ai = {aip}. A specific cause
clue is therefore a tuple (eiq,aip, t), where eiq is an individual entity
instance of concept ei observed at a time range t. To further refine the
analysis, our model supports filtering on attributes; by default, attributes
with a string data type are treated as categorical filters.

Reasoning logic reveals the factual connections between cause clues.
For example, the fact that “a cluster belongs to a zone” guides an
analyst to collect cause clues from the corresponding zone when a
cluster-level anomaly occurs. This reasoning logic is captured as a
relation in the knowledge graph, with the example being recorded as
(cluster, belong, zone). Formally, we define a set of relations R = {rk},
and a set of facts F = { fk}, where each fact fk is a tuple (ei,rk,e j) that
relation rk connects two entities ei and e j. The complete investigation
knowledge graph is thus represented as G = (E,R,F).

Justification. Many alternative methods can support the represen-
tation of investigation knowledge. They span a spectrum from highly
structured (e.g., annotated database schemas) to fully unstructured (e.g.,
natural language notes). We chose a knowledge graph blueprint because
it avoids the rigidity and poor scalability of schemas while providing
more control and clarity than free-form text. This approach yields a
flexible, governable, and lightweight representation of knowledge.

5.1.2 Building board

From the knowledge model, we designed the building board (Fig. 3),
an interactive interface for intuitively constructing and editing the
knowledge graph. The design is based on a card-based visual metaphor.

Entities and attributes (Fig. 3A). Each card displays the entity’s
name and a table of its attributes, specifying each attribute’s name and
data type (see Sec. 4.2). The interface supports direct manipulation,
allowing users to add new attributes or perform in-place editing of ex-
isting ones. Furthermore, users can define a Kusto query template [31]
for each entity to specify its data retrieval logic (Fig. 3C).



Fig. 3: The building board, showing the creation of ‘cluster belongs to
a zone’. (A) Entity card (attributes/query). (B) Relation card (semantic).
(C) Query editor. (D) Toolbar.

Fig. 4: The monitoring board, featuring (A) an incident log panel and (B)
a KPI panel with corresponding line charts for key metrics.

Relations (Fig. 3B). Relations are visualized as labeled directed
edges linking two entity cards. Clicking a relation’s label discloses a re-
lation card, which contains detailed properties. The relation’s semantic
label and its corresponding query template are directly editable.

Interactions. A toolbar provides essential graph management func-
tions (Fig. 3D). Beyond creating and editing entities and relations, it
allows users to Upload an existing knowledge graph or Download the
current one in JSON format. Clicking Save commits the graph to the
monitoring board. With this design, a graph is constructed once and
then reused or incrementally updated for subsequent analyses.

The machine agent plays an interactive validation partner. After a
user defines entities, attributes, and relations, it actively validates this
knowledge against the data sources. For example, if the corresponding
query template does not cover an attribute defined on an entity card,
an alert will be raised. Similarly, if a defined relation does not map to
valid, joinable columns in the dataset, it will warn the user.

Justification. We considered a spectrum of knowledge authoring
paradigms, from fully automated generation to an analyst-driven ap-
proach. While automated knowledge extraction offers speed, it fails on
complex operational data where variable aliases create massive, unman-
ageable graphs. We thus adopt an analyst-driven approach, granting
users full authorship to ensure the graph is reliable, interpretable, and
accurately grounded in its data sources.

5.2 Monitor Anomalies
The overview provides a summary of system anomalies by coordinating
incident logs with Key Performance Indicator (KPI) visualizations (T2).
It comprises two main components: an incident log panel and a KPI
panel. To ensure interactive performance when handling large-scale
database queries, the system relies on a data caching mechanism.

The incident log panel (Fig. 4A). This presents incident logs from
a selected time period in a tabular format. Each row corresponds to a
single incident, with columns showing its specific attributes, providing
essential context for an investigation.

The KPI panel (Fig. 4B). This panel visualizes important KPIs se-
lected by users. To ensure data fidelity, KPIs inherit their types directly
from the source system. We visualize these KPIs using synchronized
line charts for continuous data and Gantt charts for discrete events,
allowing analysts to correlate performance.

Interactions. The two panels are tightly coordinated. Clicking an
incident in the log highlights the corresponding metric in the KPI panel.
An analyst can then brush a time range on a KPI chart to select an
anomalous pattern. This selection automatically transitions the user

Fig. 5: This shows the investigation element design. There are four types
of typical elements: clues, reasoning logic, annotations, and notes.

to the investigation board for detailed reasoning. Additionally, an
“Edit Knowledge Graph” button allows users to refine the underlying
semantic model without disrupting the analytical workflow.

The machine agent is responsible for automated anomaly detection.
Our system does not propose a new anomaly detection algorithm, as
these are well-studied and typically pre-deployed in cloud environments.
Instead, it automatically queries the platform’s monitors to retrieve the
list of detected incident logs as well as pre-defined KPIs.

Justification. While many techniques exist for visualizing time-
series and event data [1, 18], our initial design using streamgraphs
produced severe visual clutter due to complex temporal dependencies.
To prioritize analytical focus and clarity, we adopted the widely inter-
pretable formats of line charts and Gantt charts.

5.3 Investigate Root Causes
The nvestigation board is for collaborative root cause reasoning, inte-
grating our reasoning model with interactive visualizations (T3, T4).

Visual design. The investigation board not only features investi-
gation elements, including cause clues and reasoning logic, but also
serves as an interactive medium for human-machine collaboration. Our
design provides a spatial canvas where analysts organize and connect
evidence to form a cohesive understanding (Fig. 5A); this organiza-
tion of clues is visually represented using a physical detective board
metaphor (Fig. 5B). Each clue card visualizes a piece of evidence as
a small chart. To handle diverse data, we use line plots for numerical
time-series (number, bag types) and Gantt charts for event sequences
(string, set types). All attributes are organized into different entity
cards. Every entity card has the title “Entity Concept: Entity”, like

“Area: Asia”. The reasoning process connecting entities is visualized
as directed arrows, which can be annotated with notes from either the
analyst or the system to explain the logical steps.

Hypothesis interaction overview. RCInvestigator supports three hy-
pothesis interactions: expanding and refining for clues; annotating for
reasoning logic. Expanding broadens the investigation by collecting a
wider set of alternative or more generalized clues. Refining drills down
into a specific clue to reveal more granular details. Annotating allows
analysts and the system to collaboratively add high-level interpretations
of visual patterns. Next, we will introduce interactions and our model.

5.3.1 Expand Relevant Clues
We present five expanding hypothesis interactions, powered by an
expanding model. We also introduce a dynamic layout algorithm that
organizes clues to preserve semantic meaning and reduce visual clutter.



Interactions and visual designs. We offer five structured expansion
interactions for exploring clues: upward, downward, leftward, right-
ward, and inward. These are derived from our knowledge model, where
each clue is a tuple defined as cip = (ei, aip ). To ensure a systematic ex-
ploration, each interaction is designed to modify only one dimension of
this tuple. Specifically, the inward interaction expands on the attribute,
while the other four expand on the entity.

Upward expansion ( fU ) facilitates root cause generalization by
collecting clues from an entity at a higher level in the knowledge

hierarchy. For example, an analyst can expand from a specific cluster to
its parent zone. This interaction helps in assessing the broader context
and potential scope of an incident.

Downward expansion ( fD) enables specialization by allowing an
analyst to “drill down” to entities at a lower level in the knowledge

hierarchy. For example, after observing a pattern in a zone, a user
can expand downward to examine a specific cluster. This interaction
is crucial for differentiating between distinct root causes that may
manifest as a single, high-level symptom.

Rightward expansion ( fR) broadens an investigation by traversing a
relationship to an entity of a different type. For example, an analyst

investigating a customer entity can expand to that customer’s associated
orders. This helps reveal potential causal links by exploring evidence
across related but distinct categories.

Leftward expansion ( fL) supports analogical reasoning by collect-
ing clues from sibling entities, that is, different instances of the

same entity concept. For example, after identifying a root cause af-
fecting clusters in the US, an analyst can expand to find corresponding
clues from clusters in Canada, accelerating the discovery of similar
incidents. This interaction is designed for comparative analysis.

Inward expansion ( fI) allows an analyst to pivot from one attribute
of an entity to another. For example, after examining a cluster’s

stability, a user can expand inward to correlate its utilization metrics.
This multi-faceted view helps uncover complex root causes that arise
from the interplay of different attributes within the same entity.

The expanding model automates the discovery of relevant clues by
performing a best-first search over the knowledge graph. It is designed
to automatically identify which of the countless potential clues (e.g.,
Customers, Orders) are most related to a given anomaly (e.g., in a Zone)
. Our model is designed to answer this question automatically. The
core of our model is a relevance metric, R(c1,c2), based on the insight
that related clues will “change” at roughly the same time. To capture
this, the model first detects significant change points in each clue’s time
series using Bayesian Change Point Detection [41]. We then define a
distance metric d(S,T ) Eq. 1, measuring the average temporal offset
between the change points of two clues.

d(S,T ) = ∑
x∈S,y(x)∈T

|x− y(x)| (1)

S and T are sets of change points for two clues, while y(x) is the nearest
change point in T for x in S. This distance is then normalized into
a relevance score as Eq. 2, ranging from 0 to 1, where a score of 1
indicates perfect temporal alignment of their change points.

R(c1,c2) = 1− 1
2N

(
d(S1,S2)

|S1|
+

d(S2,S1)

|S2|
) (2)

, where N means the number of change points. The relevance score
powers two strategies: (1) Inward expansion finds relevant attributes of
the same entity. The model queries all attributes of the current entity and
ranks them by their relevance score to the starting clue, returning the
top-k results. (2) Other expansion finds relevant entities by traversing
the graph. The model performs an iterative, best-first search. Explore
one-hop neighbors, calculate the relevance of their clues, and maintain
a ranked list of the best clues found so far. In Fig. 7, Cluster, Customer,
and Area are one-hop neighbors for Zone. The search then expands
recursively from the entities that produced the highest-relevance clues,
pruning paths that do not improve the results. The process ends when
no new high-relevance clues are found or a time limit (2s) is reached.

Layout. To organize the investigation board and preserve the se-
mantic meaning of the reasoning directions, we designed a two-step
hierarchical layout algorithm based on DAGre [12]. First, all entity
cards connected by hierarchical (upward or downward) links are par-
titioned into groups. Within each group, DAGre computes a vertical
layout, establishing a local coordinate (x1,y1) for each card. Next, each
group is treated as a single node. These group nodes are then arranged
horizontally across the canvas, establishing a group-level coordinate
(x2,y2). The final position of each entity card is the sum of its local and
group coordinates: (x1 + x2, y1 + y2).

Parameters. Our model’s parameters are set by domain-specific
heuristics and principles for interactivity. We set the BCPD [41] hazard
parameter lam to 360 (24×30/2). This is a domain heuristic for our
hourly data, reflecting an expert expectation of < 2 significant monthly
updates (e.g., version pushes). We set k = 3 as an initial UI default for
inward expansion to manage cognitive load. It is not an algorithmic
filter and all attributes remain accessible. The 2s timeout is a strict HCI
requirement to ensure interactivity and prevent the 10s+ delays from
existing tools that break an analyst’s concentration.

Justification. Our design addresses a key gap in existing methods for
clue analysis. Our literature review and expert observations revealed
three prevalent clue-collection methods: enumeration-based (KPI cor-
relation analysis), search-based (graph traversal), and learning-based
methods. The other two lack semantic organization and controllability,
while learning-based methods face data scarcity issues. We designed
the directional interactions to address the lack of semantic control
in typical search interfaces. Each direction explicitly maps to a fun-
damental analytical primitive: upward/downward for generalization
and specialization, leftward for comparison, and rightward for corre-
lation. This transforms clue collection from a “black box” query into
a human-steered dialogue with the reasoning model. Similarly, our
hybrid (ranked + clustered) layout was developed because our previous,
purely ranked-list design failed to provide necessary reasoning context.

5.3.2 Refine Current Evidence

Initial clues must be refined because a single anomaly can mask multi-
ple distinct problems. For example, a cascading failure might conflate
a primary OS error with secondary network congestion. Furthermore,
a root cause may only manifest in a specific data subset, such as on
resources of a particular version or size. To address this, our system
provides a clue refining capability. We support analysts with an interac-
tive filtering interface for manual exploration, coupled with a refining
model that automatically mines and recommends high-value filters to
accelerate the discovery of these hidden patterns.

The filter card (Fig. 6) is a dedicated interface for both manual and
automated clue refinement, consisting of a selection panel (Fig. 6A) for
selecting filters and a preview panel (Fig. 6B) for visualizing different
option combinations’ effects. Each filter (e.g., OS Type) has many
options (e.g., Linux). The key analytical challenge is that effective
option combinations are often non-obvious (e.g., Linux with TypeError
might be significant, while Linux with OverLimit is not). To overcome
this, a “Generate” button invokes our refining model to automatically
discover and suggest insightful option combinations. The preview panel
visualizes these suggested combinations using a parallel coordinate plot,
while the corresponding filtered data is displayed as line or Gantt charts.

Fig. 6: The filter card consists of two parts: (A) users can select filters and
options in the selection panel; (B) the preview panel displays alternative
groups of options and filtered attributes. e.g., the PCP shows Errorcode-
TypeError (3rd ) with OSType-Linux (2nd ).



The refining model automatically discovers filter combinations that
make an attribute’s trend most relevant to existing clues. We adapted
one of the latest and most relevant tools, MID [17], which adopts meta-
heuristic search and maximizes only increasing trends. Our modified
model searches within user-selected filters for combinations that pro-
duce both increasing and decreasing trends, as a root cause can manifest
as either. The model then ranks resulting groups by temporal relevance
to the clues already on the board (using Eq. 2), ensuring suggestions
are semantically aligned with the ongoing analysis.

5.3.3 Annotate Reasoning Logic

RCInvestigator supports a hybrid approach to annotating reasoning
logic, combining automated machine-generated notes with flexible,
human-authored annotations.

Machine annotations. The system automatically adds key analytical
actions using templates. For clue collection, a template summarizes the
graph traversal path that was followed. E.g., “<Cluster A> [belongs to]
<Zone A>” For clue refinement, another template explicitly states the
filter chain that was applied, ensuring that every data transformation is
recorded. E.g., “Filtered by <OS Type> and <Error Type>”

Human annotations. To support expressive sensemaking, analysts
are provided with a flexible canvas. They can freely add shapes (e.g.,
circles, arrows) to highlight anomalies or visually connect evidence.
Additionally, styled text can be used to distinguish between personal
hypotheses, formal conclusions, or mitigation suggestions.

5.4 Output Results
After users find the root cause and make annotations, they may click
the camera icon to save the analysis process as a PNG image, which
will help users share the results through discussion boards or email.
Users can also download the anomaly analysis log in JSON form and
share it with others for better collaborative analysis (T5).

6 CASE STUDY

This section presents two cases and expert interviews1.

6.1 Case 1: Updated Inconsistent Strategy
EA received an alert email: “[outage] Area01 incidents ...” Without
RCInvestigator, EA would reconstruct investigation context from scat-
tered tribal knowledge about Area01. Instead of this ad-hoc process, her
investigation now begins by formalizing this structural understanding,
as described in the first step.

S1. Build a knowledge graph (Fig. 7A). EA first confronted the
combinatorial complexity of mapping cross-component dependencies.
She abstracted the platform’s physical hierarchy into 3 structural layers
(Area, Zone, Cluster) and 2 application layers (Customer, Order). She
defined their relations as well, for example, connecting Zone and Area.
This helps her compress hundreds of instances into 5 entity concepts
and 9 relations. She added necessary attributes like Incident Count (the
number of hourly incidents) and Unuse Reserved VMs (the number of
virtual machines reserved by customers but unused). She then defined
query templates for data retrieval logic in the building board. This one-
time effort is the crucial step that addresses P1. The built reusable graph
now empowers the machine agent to autonomously collect relevant
data, eliminating the need for analysts to write complex, ad-hoc queries
during a live incident. EA saved the graph as a persistent asset.

S2. Find that many incidents happen in a short period (Fig. 7B).
EA proceeded to the monitoring board to find an analytical entry point.
This step is typically blocked by P1.1, forcing analysts to manually
merge alerts and write query scripts just to get started. Instead, RCIn-
vestigator had already populated the view with detected incident logs
and key KPIs. While scanning the log panel, EA observed numerous
Failed/ComputeFailed incidents all tied to a single user, Customer80.
EA double-clicked one, the board instantly highlighted the correspond-
ing Area01-Zone02-Incident Count KPI. The KPI line clearly displayed
an anomalous peak. This tailored connection design allowed her to

1This study has been approved by State Key Lab of CAD&CG.

efficiently locate the analysis entry point. She then brush-selected this
peak to transition to the investigation.

S3. Investigate why there are a large number of incidents. Inves-
tigating this spike manually would immediately force the analyst into a
cycle of P1 and P2, letting EA try to guess which of the hundreds of
metrics to query first. Instead, upon entering the investigation board,
EA was immediately presented with multiple clues in Area01-Zone02
(P1.2). She noticed that the number of unused reserved VMs and error
code count peaked while allocable nodes decreased (Fig. 8A2) at nearly
the same time as the incident count (Fig. 8A1). This led EA to her first
hypothesis: a user jam was exhausting resources. Validating this would
normally require more manual queries to dig into error codes, adding
cognitive load (P2.1&2.2). Here, EA simply used the “refine” interac-
tion on the Error Code Count(Fig. 8A3). The system’s refining model
automatically analyzed the data and surfaced that the dominant error
code was No Room for Allocation. This evidence directly contradicted
her hypothesis, so EA negated her first hypothesis about the customers.

EA formed the second hypothesis (Fig. 8B): a flaw in the reservation
process itself. She decided to investigate a customer, the corresponding
order, and its reservation for further insight. To perform this complex
cross-component reasoning, EA used a simple “rightward expansion”.
This automatically added Customer80 and Cluster25. The clues in
Cluster25 immediately presented contradictory facts. The utilization
(Fig. 8B2) was low, indicating there were sufficient physical resources,
yet the unused reserved VMs was high, aligning with No Room For
Allocation error. This strongly supported her hypothesis. Besides, the
expanding model correlates events and time series, helping EA to gain
a change in the build version (Fig. 8B3) about two days before the
incidents caught her attention. EA found that this latest update included
a reservation strategy, so she ensured that RC was hidden behind the
new build version, specifically related to the reservation update.

Finally, EA investigated the influence range. She applied the same
investigation logic to the parent Zone02 (Fig. 8C) and Area01 (Fig. 8D)
via clicking instead of adapting query scripts. In summary, EA deter-
mined that the root cause was the reservation strategy.

S4. Annotate and save. Finally, EA needed to document her
findings. This is where manual RCA fails with P3.1&3.2, as analysts
must manually assemble scattered query results, losing the reasoning
context. Instead, EA used the investigation board to create a visual
summary. She annotated her reasoning directly, circling key evidence
and adding text notes for both her negated hypothesis (“[X] Mismatch-
ing error code”) and her confirmed one (“[V] The Reservation Strategy
changed...”). She then exported the entire canvas as a single, intuitive
image. This creates a structured visual narrative of the full investigation.

6.2 Case 2: Normal Nodes Error
The alert email EC received informed him that the allocable nodes in
Area07-Zone01 decreased dramatically.

Fig. 7: The first and second steps of Case 1. (A) EA built a knowledge
graph with 5 entities and 9 relations based on her domain knowledge,
such as each “Area” contains many “Zone”s. (B) EA observed many
incidents were related to Customer80 and happened in Area01-Zone02.



Fig. 8: The investigation process of Case 1. EA proposed four hypotheses. (A) In Hypothesis 1, EA used inward expansion to collect three clues and
refined the error code clue. She negated this due to the mismatching error code. (B) In Hypothesis 2, EA collected clues and found a contradicting
pattern. She confirmed this due to a change in the build version. Both (C) and (D) show the influence range of such a root cause.

Fig. 9: The investigation process of Case 2. EC investigated clues from three different hierarchies. (A) EC found a drop in normal nodes and a high
consumption rate. He thought it might be caused by a recent update. (B) EC further checked his guess: excluded the stability factor on clusters and
confirmed the build version update. (C) EC investigated the influence range of the root cause.

S1&2. Find that the number of normal nodes drops dramatically.
EC began by loading the knowledge graph EA had previously built
and saved. This usable asset directly addresses P2.2, as it allowed
him to leverage his colleague’s formalized domain knowledge. In the
monitoring board, EC observed the KPI lines for a while. He quickly
found that the number of total normal nodes in Area07-Zone01 had
been dropping for a few days, and the trend had become steeper over
time. EC brush-selected the time range for further analysis.

S3. Investigate why the normal nodes decrease. EC first de-
cided to understand anomaly at the zone level. He used an “inward
expansion”, allowing him to efficiently gather multiple factors at once
(P1.2). The expanding model collected and surfaced two clues: the total
number of normal nodes was decreasing while the consumption rate
of normal nodes was consistently increasing and approaching 100%
(Fig. 9A). It also highlighted a build version update that was temporally
related with this, leading EC to suspect this update was the cause.

Next, EC needed to validate the hypothesis at the cluster level, a
cross-hierarchy analysis that can cause P2.2. Instead of a manual
search, he used a “downward expansion”. The system recommended
Cluster10 and Cluster98 (Fig. 9B). By comparing these siblings, he
ruled out stability (which only changed in Cluster10) as a common
cause and confirmed the build version update, which affected both, was
the true root cause. Finally, an “upward expansion” to Area07 (Fig. 9C)
confirmed the widespread impact.

S4. Conclude the summary of this investigation. Finally, EC
complemented his findings. He added his reasoning logic and a sum-
mary directly on to the board, which describes that RC was related
to normal node judgment and recycling. The overall across-hierarchy
reasoning process was now stored as a single three-level image for easy
sharing (P3). EC then exported this analysis report.

6.3 Expert Interview
We collected feedback from four domain experts (EA, EB, EC, and ED)
via one-on-one structured interviews. The whole process consists of
three stages: (1) [10min] introduction of RCInvestigator; (2) [50min]
free investigation of anomalies’ root causes; (3) [15min] a structured
interview. We summarized the feedback from three aspects as follows.
We provided a one-year dataset and tasked experts (EA, EB) with
investigating Area01 and (EC, ED) with Area07, allowing them to
choose their own specific anomalies and reasoning paths. The case
studies are the detailed results from this stage.

Investigation framework. All experts praised the proposed inves-
tigation framework. EA said the building stage facilitated investiga-
tion experience forming and sharing and was useful for formulating
knowledge basis. Besides, EB tried to edit existing investigation knowl-
edge and said it was easy to extend. EC and ED both commented
that RCInvestigator enabled easy reuse of the investigation experience.
Moreover, all experts highlighted that RCInvestigator reduced the labor



effort needed in data collection. It is effective as they do not need to
switch between databases and analysis panels during the investigation,
so the investigation becomes more “fluent” and “coherent”.

Visualization and interactions. Experts agreed that visualizations
and interactions adopted in RCInvestigator were intuitive and helpful.
All experts said that the semantic layout of clues helped them organize
their minds logically as well as inspire further investigation. Besides,
EA and ED praised the collaborative summaries and annotations. EA
said, “Direct conclusions given by the machine agent help me value
clues quickly.” Moreover, all experts commented that the design was
expressive and easy-to-understand. “Through simple charts, I can
fully understand what happened and thus devote my effort all in the
investigation instead of reading the chart”.

Comparing with the existing workflow. All experts mentioned that
RCInvestigator performs better than the existing workflow in the time
aspect. They all think the most improved process is the reasoning stage
and give different reasons. Some experts mentioned the labor aspect,
thinking that RCInvestigator frees them from laborious coding tasks and
helps them focus on the reasoning. EA said she can concentrate more on
thinking and inferring without code issues. ED and EB shared similar
positive opinions on reducing data collection efforts. Some experts
also mentioned the improvement brought by reducing mental burden.
EB said, “it (the new workflow) opens up my thinking by showing me
different angles and possible factors”. EC thought that RCInvestigator
helped uncover previously ignored KPIs. ED mentioned that the new
workflow reduces the workload of organizing and understanding clues.

Suggestions. Experts also give many valuable suggestions. EA said
that we should allow deleting unexpected clues. EB and EC suggested
adding a mini-map of the knowledge graph during the investigation
because it provides an overview and facilitates a comprehensive un-
derstanding of the whole reasoning. ED said we could add a dashed
line while hovering on charts as it would be easier to align time across
charts. We improved RCInvestigator based on these suggestions.

6.4 Quantitative Evaluation

We conducted two quantitaive experiments. Further details are dis-
cussed in the supplementary material. (1) We tested our model’s effi-
cacy on semi-synthetic datasets (100 and 1000 clues). The dataset con-
tains 10% of relevant clues to the cause. Our model outperformed a pure
correlation baseline: on the 1000-series test, our model achieved a Pre-
cision/Recall of 0.94/0.93, while the baseline only achieved 0.80/0.79.
(2) We tested our layout’s performance by measuring the latency for
graphs of varying complexity. The results confirm the system is highly
interactive for its intended scope: “medium” graphs (<50 nodes), typ-
ical of our case studies, averaged 556ms. Our two-step hierarchical
layout also inherently prevents entity overlap, with rendered examples
provided in the supplementary material.

7 DISCUSSION

This section presents the significance and generalizability, lessons
learned, limitations, and future work of RCInvestigator.

Significance and generalizability. We discuss the significance of
RCInvestigator in the following two aspects.

Investigation framework. We proposed a root cause investigation
framework based on human-machine-collaborative schema. With this
framework, analysts can be freed from labor-intensive tasks such as
data querying and information gathering and instead focus on thinking,
reasoning, and analysis. Meanwhile, machines collect data, recommend
clues, and summarize information controllably. Though this framework
is designed for cloud computing systems, we argue that it can be
applied to other scenarios, like smart manufacturing RCA. Especially
in scenarios where RCA requires analyzing large amounts of data from
multiple sources and heavily relies on domain knowledge.

Techniques. RCInvestigator comprises a novel interactive root cause
reasoning model and a real-world investigation board-inspired time-
oriented data visualization, which helps to identify the complex un-
derlying causes behind anomalies. This paper proposes two types of
hypothesis interactions and corresponding models for time-oriented

data exploration. We argue that these structured interactions for gen-
eralization, comparison, and specialization are fundamental patterns
for reasoning with temporal evidence and are generalizable to a wide
range of temporal analysis tasks.

VA design for complex scenarios. Our work contributes a visualiza-
tion design centered on semantic simplicity. Instead of designing novel
or complex charts, we intentionally use familiar visualizations like line
and Gantt charts, which are highly interpretable. The novelty lies in
our system’s ability to organize these simple plots into a meaningful
structure that reflects the reasoning process. By preserving the seman-
tic relations between clues (e.g., hierarchy, comparison), our layout
transforms a potentially overwhelming collection of individual charts
into a cohesive and intelligible visual narrative of the investigation.

Lessons learned. Through our collaboration with experts, we have
learned valuable lessons. First, providing the necessary textual sum-
maries when recommending visual elements is crucial. We initially
presented recommended clues as a ranked list of small charts, but ex-
perts found this cognitively overwhelming, even with simple visuals.
We learned that when presenting a large volume of evidence, visual
plots must be complemented by natural language summaries that clas-
sify and abstract the key findings to be effective. Second, semantic
layouts are better than just clean layouts. We first used a force-directed
layout, which was clean but semantically meaningless to our experts,
causing them to get lost. We learned that for complex reasoning, a
layout’s alignment with the user’s mental model is far more important
than generic visual optimization.

Learning curve of RCInvestigator. RCInvestigator’s learning curve
varies across its distinct operational stages. The building stage repre-
sents the primary initial investment. This is a deliberate tradeoff where
the structuring effort required to build the graph replaces the high, con-
tinuous cost of repeated manual investigation. Although it requires
building an initial graph, this “cold-start” is mitigated as the graph
formalizes the expert’s existing mental model and can be built pro-
gressively, allowing analysts to gain immediate value. The resulting
knowledge base becomes a stable, reusable asset that amortizes the
one-time setup cost. Besides, the monitoring stage has a minimal learn-
ing curve due to its familiar UI to experts’ frequently used table form,
while the Reasoning Stage is designed for rapid adoption, centered
on two simple interactions (expanding and refining) that directly align
with an analyst’s natural problem-solving process.

Limitations and future work. RCInvestigator has some limita-
tions that should be considered. (1) The current reliance on a human-
constructed knowledge graph, while ensuring high reliability, requires
for an initial “cold-start” effort. Future work should explore semi-
automated approaches to streamline this process without sacrificing the
quality of the domain knowledge. (2) The machine agent is good at
finding direct relations but struggles with indirect ones, like identifying
a fault when two metrics suddenly stop correlating. (3) Our evaluation
was limited by challenges with data compliance and analyst recruitment.
We only conducted an initial validation using case studies and expert
interviews. Future work will focus on an in-situ study.

To further expand the capabilities of RCInvestigator, we outline two
key areas for future work. (1) We will enhance knowledge injection by
investigating semi-automated graph construction. We plan to integrate
LLMs to extract entities and relations from unstructured historical logs
and business knowledge, supported by interactive human-in-the-loop
validation. (2) We plan to extend RCInvestigator’s functionality to
support collaborative analysis among multiple analysts simultaneously,
thereby increasing collaborative efficiency.

8 CONCLUSION

In this paper, we proposed RCInvestigator, an interactive system for in-
vestigating anomaly root causes in cloud computing systems. Through
the collaboration with domain experts, three challenges were identified
in investigating root causes. We designed a novel human-machine-
collaborative framework consisting of four stages (building, monitoring,
reasoning, and concluding) to address these challenges. We built RCIn-
vestigator based on this framework and evaluated the system through
two real-world use cases, receiving positive feedback from experts.
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