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Abstract—Tables are a ubiquitous data format for insight
communication. However, transforming data into consumable
tabular views remains a challenging and time-consuming task.
To lower the barrier of such a task, research efforts have been
devoted to developing interactive approaches for data transfor-
mation, but many approaches still presume that their users have
considerable knowledge of various data transformation concepts
and functions. In this study, we leverage natural language (NL)
as the primary interaction modality to improve the accessibility
of average users to performing complex data transformation
and facilitate intuitive table generation and editing. Designing
an NL-driven data transformation approach introduces two
challenges: a) NL-driven synthesis of interpretable pipelines and
b) incremental refinement of synthesized tables. To address these
challenges, we present NL2Rigel, an interactive tool that assists
users in synthesizing and improving tables from semi-structured
text with NL instructions. Based on a large language model
and prompting techniques, NL2Rigel can interpret the given
NL instructions into a table synthesis pipeline corresponding
to Rigel specifications, a declarative language for tabular data
transformation. An intuitive interface is designed to visualize
the synthesis pipeline and the generated tables, helping users
understand the transformation process and refine the results
efficiently with targeted NL instructions. The comprehensiveness
of NL2Rigel is demonstrated with an example gallery, and we
further confirmed NL2Rigel’s usability with a comparative user
study by showing that the task completion time with NL2Rigel is
significantly shorter than that with the original version of Rigel
with comparable completion rates.

Index Terms—Data transformation, Natural language inter-
face, Large language model, Human-AI collaboration.

I. INTRODUCTION

Data tables are a universal interchangeable format for data
management [1], analysis [2], [3], and presentation [4]. One
common practice of data practitioners is converting raw data,
including relational tables and less structured formats like
HTML, JSON, CSV, and PDF documents, into tables of differ-
ent structures, as depicted in Fig. 1. While this transformation
is crucial for effective communication and consumption of
the insights buried under different data formats, the process
is frequently ad-hoc, which can be challenging and time-
consuming for average users without fluent scripting skills.

Interactive approaches have been proposed to democratize
such complex data transformation. These approaches typically
offer an imperative interface [5]–[7], allowing users to select
and execute data operations, such as cross tabulation and
transpose, using toolbars or menus. Nonetheless, it remains
crucial for users to understand the implications of these data
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operations, which can be challenging if they lack familiarity
with data transformation [8]. By-example approaches [8]–[11]
have recently emerged as a promising technique for lowering
the barrier of data transformation. These approaches enable
users to provide a partial example of the transformation target,
from which the possible transformation procedures can be
inferred. However, these approaches are limited in their ability
of synthesizing complex data transformation pipelines based
solely on the input and partial output, particularly when the
pipelines involve custom calculations like weighted average.

Natural language (NL) interfaces have shown great potential
in enhancing the accessibility to complex tasks [12]–[15].
Several attempts [3], [16], [17] have been made to facilitate
tabular data transformation by synthesizing code or formulas
based on NL instructions. However, most approaches lack
transparency and provide no accompanying explanation of the
synthesized results. Other approaches, such as Nlyze [3] and
Gridbook [16], directly present the obscure script-like formu-
lae. This can leave users confused about the transformation
process and struggled with debugging incorrect results [16].
Additionally, these approaches often lack fine-tuning opera-
tions, requiring users to blindly revise NL instructions until
they achieve the desired outcome.

The limitations observed in the existing studies motivate us
to propose a novel interactive data transformation approach
that utilizes NL as the primary interaction modality and
enables users to synthesize tables in an interpretable and
incremental manner. Developing such an approach poses the
following two challenges:

NL-driven synthesis of interpretable pipelines. The first
step toward NL-driven data transformation is to understand the
diverse NL instructions provided by the users and construct
the interpretable transformation pipelines that align with these
instructions. Inspired by the recent progress on large language
models (LLMs) [18], [19], we exploit the NL understanding
and generation capabilities of OpenAI GPT-3.5 [20] to parse
the NL instructions and generate specifications of Rigel [11],
a recently proposed declarative grammar of tabular data trans-
formation that describes the transformation pipelines in an
apprehensible manner. Compared to traditional NL parsing
methods using context-free grammar and neural semantic
parsing [21], LLMs are able to understand a wider range of
NL input due to the knowledge injected, while also saving the
needs of training tailored models on various tasks [22], [23].
For instance, they can identify the concepts “quantity” and
“total sales” that are directly not clarified in the underlying
data, as shown in Fig. 1. However, as a general model, it is
still challenging to synthesize the complex Rigel specifications
correctly with the GPT-3.5 model.

Incremental refinement of synthesized tables. Experi-
mental studies have demonstrated that LLMs can produce
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Fig. 1. NL2Rigel allows users to construct tables from semi-structured data through natural language instructions (A). It also assists users in understanding
the conversion by providing visualizations of intermediate results (B) and enables interactive table refining through supplementary instructions (C, D).

inaccurate or unfaithful results in practice [23]–[25], includ-
ing in scenarios related to data transformation [23]. As a
consequence, the LLM-synthesized transformation pipelines
may contain various errors. For example, certain parts of
the instructions may be ignored, causing the desired cells
to be left out of the generated tables. Moreover, the NL
instructions provided to the LLMs may be misinterpreted,
resulting in erroneous aggregations or calculations that can be
challenging to identify. To alleviate such issues, it is essential
to have an intuitive visual interface that explains how the tables
are generated based on the complex transformation pipelines.
Additionally, accessible interactions should be provided to
allow users to quickly edit the pipelines and improve the
transformation results.

In this paper, we propose NL2Rigel, an interactive system
that facilitates table creation and refinement for data practi-
tioners. NL2Rigel allows users to leverage NL instructions to
construct desired tables from structured data (e.g., relational
tables). It also supports a proportion of semi-structured data
that has a regular format to be parsed into structured input. For
the first challenge, we devise a multi-step prompt engineering
approach to generate feasible Rigel specifications with GPT-
3.5 based on users’ instructions. For the second challenge, we
develop an intuitive interface that provides NL explanations for
different parts of the generated table, visualizes the complex
Rigel specifications with legible data flow diagrams, and em-
powers users to incrementally refine the transformation results
with targeted NL instructions. We show the comprehensiveness
of NL2Rigel with a gallery of supported transformation cases
that demonstrates its capability of completing various trans-
formation tasks. A user study was also conducted to compare
the affordance and accuracy of NL2Rigel with those of using
Rigel directly. The findings show that transforming data with
NL2Rigel was less demanding while maintaining comparable
accuracy.

II. RELATED WORK

Our work draws on and extends existing research on a
series of foundational work in data transformation, interacting
with data in NL, LLM-driven interfaces and the underlying
declarative language for data transformation, Rigel [11].

A. Tools for Data Transformation
Numerous interfaces, software, and libraries have been

developed for data transformation recently. However, given the

versatility of transformations, the scopes they are mainly de-
signed for are diverse, including Extracting (i.e., parsing or ex-
tracting from raw data into more structured forms), Reshaping
(i.e., modifying the data schema or records), Cleaning (i.e.,
tidying or formatting dirty data), and General. In the following,
we discuss these tools along with their scopes.

In the early stage, data transformation is commonly per-
formed using integrated functions from more general data
processing tools. For instance, users can manually edit the
target table using spreadsheet tools like Microsoft Excel (G),
which obviously becomes time-consuming when confronted
with complex tasks or a huge amount of data. Users with a
professional background may perform data queries or man-
agement in database systems using structural languages (e.g.,
E: TSIMMIS [26]; R & C: SQL and its extensions [27],
[28]), or writing custom scripts with data processing libraries
[29]–[32] (G) to author sequences of operations. The well-
designed functions and parameters provided by these tools
are expressive enough to cover various scopes and classes of
transformations. However, the learning curve of programming
and mastering these functions also becomes an obstacle to data
practitioners without a coding background [8], [33].

Consequently, a great many tailored interactive systems
have been developed to promote efficient data transformation
without programming. One of the most common practices is to
put a compact list of functions and parameters in a menu that
users can select and apply to specify desired transformations
(E: [34]; R: [5]–[7], [35]; C: [36]). Despite the effectiveness,
the imperative operations are often hard to be interpreted
by average users, and can be demanding in complex data
extracting and reshaping tasks due to the lengthy operation
sequences [8]. To address this, modern systems incorporate
interactions that encourage users to focus on “what the target
table looks like” rather than “how to transform the data”,
hiding obscure details of the transformation process. For ex-
ample, a number of systems allow users to provide an example
pair of I/O tables and automatically synthesize transformation
scripts (E: [37]–[39]; R: [8], [40]; C: [9], [10], [41]–[45]).
However, examples are essentially hard to convey complex
intents in table reshaping, particularly when the operations
involve pivoting, nested aggregations or computations like the
weighted average, which can hardly be inferred solely from
input/output values. In particular, some systems incorporate
declarative models that can directly generate tables based on
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Fig. 2. Examples for applying the specifications of Rigel to given relational tables. (A) The input relational tables revealing the annual income (A1)
and expense (A2) for each person. (B) The result table for the specification (Y ear), (Name) → (Income). (C) The result table for the specification
(Y ear ×Name), () → (Income+ Expense).

the user-constructed grammatical specification (R: [11], [46],
[47]). Yet, they only save efforts for specifying the overall
table structure, while detailed mutations on entities such as
arithmetic operations still require manual configurations.

In recent years, users are further allowed to describe the
intentional task with NL in several table reshaping tools,
which is more intuitive and effortless to specify complex
intents for average users. Nlyze [3] (R) presents an algorithm
to parse NL into a list of candidate programs based on its
designed DSL. GridBook [16] (R) further allows users to
issue NL instructions in the spreadsheet grids that can be
transformed to Excel formulas to generate tables. NL2Rigel
contrasts these systems in two factors. First, it supports end-to-
end table synthesis with a wider scope of table transformation
classes such as creating cross-tabulations. Second, existing
systems lack sufficient information to help users understand
the results and flexible interactions to refine tables when
necessary [16]. Although several NL interfaces in related
areas (e.g., table query) provide explanation and debugging
operations on the parsing results [48], [49], they depend on
the specific technical representation of user requests (e.g., SQL
and lambda DCS [50]) and cannot be directly applied to table
synthesis. In contrast, NL2Rigel visualizes the intermediate
results and supports incremental table refinement.

B. Interacting with Data in Natural Language

Since NL provides an intuitive and accessible way for
users to interact with data and facilitate making complex
or customized requests, NL interactions have been widely
adopted in fields of data science including database [49],
[51], [52] and information visualization [53]–[58]. Generally,
to perform a NL-based interaction, there are two underlying
steps: instruction parsing and execution. We classify existing
research based on these two steps and discuss them below:

Instruction parsing. During the parsing process, many
systems adopt parsers based on context-free grammar or the
part-of-the-speech algorithm [59] to divide the NL instruction
into semantic segments [14], [15], [53], [54], [56]. The rapid
development of machine learning also promotes parsers based
on neural networks for better accuracy [58], [60]. However,
training models can be costly and require tailored datasets,
which is often hard to seek in many domains including data
transformation. In recent years, language models pre-trained
with millions of parameters, or large language models (LLMs),
have shown outstanding abilities in complex reasoning and

code generation (e.g., PaLM [19], the GPT series [18]).
Therefore, some researcher have been studying the potential
of LLMs for textual wrangling problems [22], [23].

Execution. In the second step, the parsed NL instructions
will be translated into usage-specific formats to carry out the
desired tasks. Owing to the advances in natural language pro-
gramming, most systems synthesize scripts of programming
languages or domain-specific languages (DSLs, e.g., SQL,
Vega-Lite [61]) based on the parsed results [53], [54], [58].
There are also a few systems transforming the parsed results
to compact, tool-specific operations [60].

Accordingly, NL2Rigel adopts the GPT-3.5 model to parse
NL instructions, enabling the comprehension of utterances
with non-existent concepts in the underlying data or high-
level intents. During the execution, the model also facilitates
generating different formats for different sub-tasks within a
single-model (e.g., JavaScript code for data extraction, and
Rigel specifications for table construction), eliminating the
need of training various models.

C. Leveraging LLMs in User Interfaces

The powerful capability of the state-of-the-art LLMs has
attracted much attention in the HCI domain to apply them
to interfaces for various tasks [62]–[66]. For instance, Jiang
et al. [67] introduce an interface synthesizing code from
NL instructions. However, applying this general model to
domain-specific tasks often require extra efforts. One line of
research directly encodes context information and provides
task-specific examples in the prompt (i.e., the input to the
model) [66]. Others fine-tune the model using customized
task-related datasets to provide necessary information [62]. To
improve the performance, some researchers further use tuning
methods to optimize the prompts [64]. However, in cases
where multi-step reasoning is demanded, the performance of
LLMs can decrease [63]. Therefore, Wu et al. [63] introduces
the approach of chaining, where a complex task is divided into
multiple steps, each step handled by a separate LLM layer, and
subsequent layers can take the output of previous ones as input.
NL2Rigel draws inspiration from this work and introduces a
tailored workflow with chained LLM layers for end-to-end
table construction.

D. Rigel: A Declarative Language for Data Transformation

Taking one or more relational tables and a specification as
input, Rigel [11] can directly derive the transformed target
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Fig. 3. The user interface of NL2Rigel. (A) The data view. (B) The extracted-table view consisting of the relational table extracted from the raw data (B1)
and a table showing all entities that are derived during the conversion (B2). (C) The target-table view incorporates a generated table that is currently on focus
(C1) and several tables as suggestions (C2). The user may enter NL instructions in the chatbox (C3) to generate or improve tables. A description of the
corresponding entity is also offered when a cell is clicked (C4). (D) The pipeline view with a dataflow diagram visualizing the transformation process.

table corresponding to the specification. The main idea of
Rigel is the declarative mapping approach, where a table is
divided into 3 channels (row header, column header and cell)
and entities can be mapped to these channels to construct
tables. Specifically, the basic form of a valid Rigel specifi-
cation is (rowHeader), (columnHeader) → (cell), where
rowHeader, columnHeader and cell are entities. Initially,
each column of the raw table is an entity. To support diverse
transformation tasks, data functions can be applied to these
entities to derive new ones. Besides, multiple entities can be
mapped to a single channel, where the operator + or × will
be used to connect the entities respectively when the table
channel is row/column header or cell.

Fig. 2 illustrates examples of applying the specifications
of Rigel to given relational tables. For the two input rela-
tional tables of the annual income (Fig. 2(A1)) and expense
(Fig. 2(A2)) by person, the specification (Y ear), (Name) →
(Income) will map years to the row header channel, names to
the column header and income to the cell respectively, which
will consequently lead to the target table in Fig. 2(B). Simi-
larly, for the specification (Y ear×Name), () → (Income+
Expense), the Cartesian product of Year and Name will be
mapped to the row header channel, while Income and Expense
are appended and positioned in cells of separated columns, as
shown in Fig. 2(C).

III. USAGE SCENARIO

Alice, a data analyst for a car enterprise, had been tasked
with writing a sales report. She had been provided with the

necessary order information, which included the date, order
ID, order contents, and unit price for each product ordered.
This information was currently stored in a plain-text document
(Fig. 1(A)). To present the order information in a clear and
informative manner in her report, Alice must transform the
document into a legible table that would provide insights into
the car sales data. Due to her lack of experience in writing
tailored scripts, Alice attempted to use existing interactive
transformation systems but found it difficult to process the
plain-text document with these systems. As the result, she had
decided to turn to NL2Rigel for assistance.

To begin the data transformation process, Alice imported
raw data into the system (Fig. 3(A)). Her lack of expertise in
data transformation left her unsure about which instructions
to provide. Luckily, NL2Rigel offered suggestions in a drop-
down list when she clicks on the input box (Fig. 3(C3)).
After briefly reviewing the options, she found “Compute the
total sales” to be a potentially useful instruction. With this in
mind, she clicked on the microphone icon in the input box and
spoke her instruction aloud: “Compute the total sales for each
model”. Based on this instruction, NL2Rigel automatically
synthesized transformation pipelines based on Alice’s intents
and subsequently presented the results on the user interface.
On the left side of the interface, NL2Rigel displayed the
extracted (Fig. 3(B1)) and derived (Fig. 3(B2)) entities from
the input data and presented them in corresponding relational
tables. In the center of the interface, NL2Rigel presented
the most probable target table (Fig. 3(C1)) along with two
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alternative ones with different layouts (Fig. 3(C2)). On the
right side of the interface, NL2Rigel illustrated the data flow
diagram of the entire pipeline, which not only demonstrated
the transformation path of the current target table but also the
alternative ones in dashed gray lines.

Noticing that the target table included many numbers that
were not present in the original data, Alice wondered whether
these numbers were accurately calculated. After selecting
the cell containing the value of 122, NL2Rigel identified
the Total Sales entity that this cell was associated with and
provided a succinct definition of this entity at the top of the
target table (Fig. 3(C4)). Furthermore, a comprehensive textual
explanation on how the entity was derived was presented when
Alice hovered over the “see more” link to the right of the
definition.

During her analysis of the target table, Alice noticed that
many cars shared the same brand. To inspect sales by brand,
she decided to alter the table layout. Instead of repeating the
entire instruction, Alice simply clicked on “Audi-A3”, one
of the purple cells corresponding to the Model entity, and
instructed NL2Rigel to “extract the brands” (Fig. 1(C)). In a
few seconds, NL2Rigel updated the table to display the sales
figures for each brand, including Audi and Buick. Impressed
by the system’s performance, Alice decided to create another
table that expanded the total sales by date. Once again, she
instructed NL2Rigel to “group by both brands and dates”.
NL2Rigel quickly presented Alice with the result (Fig. 1(D)).
Overall, Alice found synthesizing and refining tables with
NL2Rigel to be a smooth and effortless experience, and she
successfully completed her report with the generated tables.

IV. NL2RIGEL

This section presents the design rationales, the detailed
implementation and the interface of the NL2Rigel system.

A. Design Rationales and System Overview

To enable users to effectively synthesize and refine tables
using NL instructions, we conducted a thorough literature sur-
vey on the design principles of NL interfaces [12], [14], [68],
[69] and data engineering [49], [70]–[72]. We also collaborated
over a period of three months with three experienced data
practitioners, P1, P2, and P3. P1 was a senior visualization
researcher with decades of experience in designing data-driven
visual analytics systems. P2 worked as a researcher for a
large corporation specialized in tabular data understanding
and wrangling. We also invited P3, a Ph.D. student, who
had over eight years of experience in writing data analysis
scripts. During bi-weekly brainstorming sessions, we gathered
their feedback on the preliminary design rationales and system
prototypes. We also observed despite their expertise, they
agreed with the intuitiveness and efficiency brought by NL in-
structions. They also appreciated the prototype in recommend-
ing diverse tabular views and solving ad-hoc and multi-step
transformation tasks. Through this iterative design process, we
arrived at the following three key design rationales.

Provide NL instruction recommendations. By integrating
NL as the primary interaction modality, users can easily

describe their desired data transformation. However, the cold
start issue [14], [57], [60], [69], [73] can cause users to hesitate
about what levels of abstraction the system can understand,
making it difficult for them to express their goals in the first
few attempts. To address this issue, the system should provide
recommendations to assist users in giving NL instructions.
Furthermore, NL instructions can vary greatly in granularity,
ranging from very coarse (e.g., “show me the sales report”)
to very detailed (e.g., “put product name in the first column
and year in the first row, and then fill cells by multiplying
unit price by quantity per product and year”). To better
adapt to users’ preferences, the proposed system should offer
recommendations at different levels of granularity.

Explain data transformation pipelines. To help ordinary
users comprehend the underlying data transformation pro-
cesses, the Rigel specifications generated by GPT-3.5 should
be presented in an intuitive manner, allowing users to easily
understand how NL2Rigel synthesizes tables. Previous NL-
based systems [14], [49], [68] have demonstrated the effec-
tiveness of using multi-modal explanations to improve compre-
hension of the results generated from NL instructions. Based
on the identical rationale, we propose interpreting the pipeline
from three perspectives: a) data-oriented interpretation, which
presents the entities extracted and derived from the raw data in
the form of relational tables; b) process-oriented interpretation,
which illustrates the transformation process as a data flow
diagram, showing the relationships among the entities; and
c) result-oriented interpretation, which enables users to select
entities directly in the table to obtain explanations.

Facilitate refinement with targeted NL instructions. Ex-
isting literature has demonstrated the importance of supporting
the debugging of lengthy or nested queries to alleviate users
from the tedious manual work of verifying each segment of
the instruction [72]. As NL2Rigel is an end-to-end system that
accepts complex NL instructions as input, it is crucial to devise
an efficient strategy to enable users to refine the target tables
without having to manually reorganize the instructions. To this
end, NL2Rigel should permit users to provide additional NL
instructions to perform mutations directly on the generated
tables, which can assist users in providing more targeted
utterances and reduce their trial-and-error attempts and efforts.
Furthermore, NL2Rigel should offer recommendations and
alternative transformation pipelines to aid users in exploring
the space of potentially improved table layouts.

Based on these rationales, we designed NL2Rigel.
NL2Rigel is mainly targeted at transforming structure data into
new tabular views by utilizing NL instructions from users as
input. To accommodate cases when initial structured data is
unavailable, it also supports textual data that is semi-structured
(e.g., HTML, JSON, CSV, or key-value pairs) as input. To
support its features, NL2Rigel incorporates an interface to
collect the user input and display the results, and an underlying
computation module that leverages the language model to
predict the desired pipelines.

As illustrated in Fig. 3, the interface of NL2Rigel con-
sists of a data view displaying the raw data (Fig. 3(A)), an
extracted-table view containing the extracted relational table
and a derived-entities panel of entities generated throughout
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Fig. 4. The overall workflow of NL2Rigel. NL2Rigel takes the NL instruction from users (A1) and the raw data (A2) as input. The transformation process
includes four steps: first, the raw data is sampled (B1) and used to extract relevant entities (B2) using the GPT-3.5 model. Then, the model uses the extracted
entities to synthesize scripts (B3) and generate a relational table from the raw data (C1). Meanwhile, it also derives some new entities (B4), which are later
leveraged to construct table specifications (B5). Target tables can be calculated from the specifications, with the most likely one taken as the current table
(C2) and others as suggestions (C3, C4).

the conversion (Fig. 3(B1, B2)), a target-table view showing
the transformation results and suggestions (Fig. 3(C1, C2)),
and a pipeline view visualizing the transformation pipelines
(Fig. 3(D)). To perform transformations, there are three gen-
eral steps in the user workflow: first, the user provides an
instruction to construct initial pipelines; second, the user may
inspect the generated pipelines through interactions; third,
supplementary instructions can be given to refine the target
table. The last two procedures are iterated until the user
acquires a desired result.

B. NL-Driven Synthesis of Data Transformation Pipelines

Having imported the textual data as input, the user can
clarify their transformation intents through NL instructions
in the chatbox below the target table (Fig. 3(C3)). NL2Rigel
supports multiple input modalities, allowing users to either
speak the instruction by clicking on the microphone icon
or type it in plain text. To avoid the cold start problem
for beginners, NL2Rigel leverages GPT-3.5 to proactively
offer some potential instructions according to the raw data,
as soon as the user clicks on the chatbox before giving an
instruction. After choosing an instruction or revising it to their
preference, the user may click on the transform button to start
the transformation.

To construct initial pipelines based on the raw data and user
instruction, we design a computational workflow empowered
by GPT-3.5, a state-of-the-art LLM capable of solving nu-
merous general tasks. As directly solving the problem can
be too difficult for the model, we divide the problem into

several manageable sub-tasks inspired by recent applications
[63], [66]. Each sub-task will be handled by a separate GPT-
3.5 layer, and the output of previous tasks is parsed and
included in the input of subsequent tasks. An overview of
the workflow is illustrated in Fig. 4. NL2Rigel takes the
NL instruction from users (A1) and the raw data (A2) as
input. Due to the character limit posed by GPT-3.5, NL2Rigel
samples the raw data (Fig. 4(B1)) by truncating the data after
the last newline within the first 1500 characters, aiming to fit
as many complete records as possible in the prompts. After
the sampling, it leverages a four-step workflow to synthesize
Rigel specifications:

Extract entities. Initially, NL2Rigel identifies and extracts
the entities from the sampled data that may be useful for the
transformation with the assistance of GPT-3.5 (Step 1). For
instance, taking the sampled data in Fig. 4(B1), it extracts four
entities Date, Order ID, Order and Unit Price (Fig. 4(B2)).
Relevant information such as example values, the source
lines where the entity is extracted and whether the entity is
quantitative or categorical is also recorded.

Generate the relational table. In this step, NL2Rigel
transforms the raw data into a relational table. Since the
prompt length of GPT-3.5 is constrained, a JavaScript program
(Fig. 4(B3)) is synthesized based on the sampled data and the
extracted entities (Step 2-1). It then generates the relational
table (Fig. 4(C1)) by executing the program on the raw data
(Step 2-2). Specially, in case the generated code has errors
that prevent it from successfully running on the given data, the
model will regenerate the code for up to 5 attempts before the
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system sends an error message to the user. Meanwhile, users
are also allowed to manually edit the generated relational table
in the extracted-table view (Fig. 3(B1)) if data issues exist.

Derive entities. Having got the extracted entities, NL2Rigel
further leverages GPT-3.5 to derive some new entities
(Fig. 4(B4)) by combining extracted ones and the data func-
tions of Rigel (Step 3). For example, Quantity and Product
can be derived by splitting the values of the Order entity by
the blank space. A unique name and a Rigel specification are
generated and stored for each derived entity. To ensure the
validness of the derived entities, the generated specifications
will be tested by regular expressions, with up to 5 reruns of
the derivation process when encountering errors.

Construct table specifications. After acquiring all the com-
ponents of a Rigel specification, NL2Rigel then calls GPT-
3.5 to map the extracted and derived entities to different
table channels (Step 4) to construct candidate specifications
for the transformation task (Fig. 4(B5)). The model is also
employed to rank the results in descending order by the
similarity to user intents. After undergoing syntactic evaluation
similar to previous steps, these specifications can be eventually
transferred to the calculation module of Rigel to produce the
target tables, where the most likely specification will be used
as the default current table in the interface (Fig. 4(C2)) while
others will be taken as suggestions (Fig. 4(C3, C4)).

While applying the GPT-3.5 model to each step, we care-
fully engineer a prompt by combining the corresponding input
and our compilation of context knowledge. Afterwards, the
prompt is fed to the LLM and the generated contents will
become the output for this step after some processing. By
learning from the rationales of existing research on the prompt-
ing methods of LLMs [74]–[76], we design a prompt template
and apply it throughout our workflow. Fig. 5 illustrates an
example prompt for the derive entities step. Specifically, the
prompt template comprises of the following six components:

• Preamble provides a brief introduction to Rigel by nar-
rating the formalized definitions and rules that are men-
tioned in Section II-D.

• Functions offer information of the data functions in Rigel.
Since we find understanding the usage and picking the
functions require considerable reasoning and can be tricky
for the LLMs, we provide a detailed list of the name,
the valid format, a description of its usage and some
examples for each function.

• Task describes the primary task the LLM is expected to
perform. The user instruction is included in the statement
if necessary.

• Task input embeds other fields (mostly with larger
lengths) used for the performed task except the in-
structions. For example, the sampled data and extracted
entities (with the names and some values written in the
script form) are concatenated and positioned at the end
of the prompt for the derive entities sub-task.

• Task-specific examples provide a few cases according to
the task to be performed. For instance, we provide an
example scenario and list the potential derived entities for
the derive entities sub-task. Generally, we only include at
most two examples here due to the prompt size limit and

Fig. 5. An example prompt of NL2Rigel that includes 6 components
(preamble, functions, task, task input, task-specific examples and type control).
The input for this process (e.g., the user instruction, sampled data and
extracted entities) is also embedded into the prompt.

actual performance.
• Type control gives restrictions on the output type.
Note that some components of the template are optional as

they may bring unnecessary information for some sub-tasks.
Table I shows an overview of the components that are included
in the prompt for each sub-task. During the implementation,
we also fine-tune the order of different components in some
sub-tasks for better performance. We refer readers to the
appendix for prompt examples. Meanwhile, our presented
template is merely one feasible design and we encourage
future researchers to adjust our solution or develop novel ones.

C. Inspection and Refinement of Transformation Results

When the conversion process is finished, the result tables
recommended by the LLM (the construct table specifications
sub-task in Section IV-B) will be shown in the target-table
view (Fig. 3(C1, C2)), where the one identified by the model to
satisfy the user intents most will be chosen as the current table.
Users may click on the “select” buttons beside the suggested
tables to switch to other candidates. Additionally, to help users
understand the conversion process and inspect the generated
table, NL2Rigel first provides details information about the
transformation pipeline, which are displayed in three views:

a) As the intermediate output of the transformation process,
the extracted-table view incorporates the relational table reor-
ganized from the raw data (Fig. 3(B1)), where each column
represents an extracted entity encoded with different colors.
By exerting data functions on these entities, new entities are
derived and placed in different columns of the table in the
derived-entities panel (Fig. 3(B2)). Both the extracted and
derived entities are later used to construct the target table.
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b) To visualize the table construction process, the pipeline
view includes a data flow diagram to facilitate user under-
standing of the pipelines (Fig. 3(D)). Specifically, this diagram
visualizes the derivation relationship between entities and the
mapping from entities to table channels. Each card represents
an entity and includes a corresponding value list. For quantita-
tive entities, an optional histogram is also provided. For each
entity derivation, the cards of the source and target entities
are connected by edges. To illustrate the mappings between
entities and the target tables, we leverage a colored glyph to
represent each target table, the color of whose grids indicate
the source entities of the cells. We also connect each glyph
with the cards of all entities used by the table. Besides, to
highlight the current pipeline and reduce the space cost, the
diagram follows the focus-and-context strategy [77] and scales
the cards of all used entities and the table glyph for the current
table. While the rest parts are diminished, users are still able
to click on the table glyphs to switch to other pipelines.

To build the data flow diagram, we first identify the deriva-
tion relationships between entities by syntactically parsing the
specifications of entities. Similarly, the component entities for
each recommended table are also acquired by parsing the table
specifications. A graph can be consequently built based on
these relationships and rendered on the interface. We also
utilize the Dagre [78] library to optimize the graph layout.

c) While the former views can provide a general overview
of the transformation pipeline, there also exist scenarios where
users are interested in the provenance of a specific cell
or row/column. Therefore, NL2Rigel also provide an in-situ
explanation to avoid the frequent focus shift between views.
As soon as the user selects a cell in the current table, the
corresponding entity and a short NL description of it are shown
on the top of the current table (Fig. 3(C4)). Users can fetch the
detailed version of the description by clicking on the see more
link. The explanation is generated by prompting GPT-3.5 in a
similar way to the synthesis of pipelines (Table I).

Through examining the synthesized pipeline, there can be
cases where the tables generated by NL2Rigel fail to meet the
users’ demands. In this case, besides rephrasing their instruc-
tions, users are further allowed to provide targeted instructions
in the chatbox as a supplement to previous utterances and
specify the desired scope for this instruction. For example, if a
user is to fine-tune the values (e.g., filtering, sorting, averaging,
...), he can first click on one of the cells to be altered. As such,
the tag in the chatbox (Fig. 3(C3)) will contain the value of
the selected cell, indicating the instruction will be performed
exclusively on the entity that the cells belong to. After giving
a local instruction such as “remove the values below zero”,
NL2Rigel will automatically compute the fine-tuned entity and
update the current table by replacing the original entity with
the new one. On the other hand, when the user prefers to
alter the table schema, he can simply offer an instruction such
as “group by the dates” without other interactions, leaving
the tag in the chatbox as the default value global. In this
case, NL2Rigel will recalculate appropriate table specifications
to update the current table based on the instruction. Both
refinement is powered by GPT-3.5 with its prompt components
shown in Table I.

TABLE I
THE ADOPTED COMPONENTS FOR THE PROMPT OF EACH SUB-TASK IN
OUR WORKFLOW. (P: preamble, F: functions, T: task, TI: task input, TE:

task-specific examples, TC: type control.)

Sub-task P F T TI TE TC
Extract entities ✓ ✓ ✓

Generate the relational table ✓ ✓ ✓
Derive entities ✓ ✓ ✓ ✓ ✓

Construct table specifications ✓ ✓ ✓ ✓
Input Suggestion ✓ ✓
Explain entities ✓ ✓ ✓
Refine entities ✓ ✓ ✓ ✓ ✓

Refine specifications ✓ ✓ ✓ ✓ ✓

TABLE II
THE PROPOSED DESIGN SPACE FOR THE BASIC CORPUS.

Table
structure

Channel
row-oriented (A), () → (B)

column-oriented (), (A) → (B)
cross-tabulation (A), (B) → (C)

Dimension Unidimensional (A), () → (B)
Multidimensional (A×B), () → (C)

Entity
feature

Function
Nto1 concat
1toN split
1to1 sum

Nesting Unnested sum(A)
Nested sum(mul(A,B))

V. TASK GALLERY

To assess the expressiveness of NL2Rigel, we present a
gallery of tasks to evaluate the coverage of our method
in different contexts. We organize the gallery based on the
complexity of the tasks.

Basic corpus. The tasks in the basic corpus are meant
to show the comprehensiveness of tasks that NL2Rigel can
manage to resolve. Unfortunately, the existing classification
on tabular data transformation [79] is too general or high-
level and can be inappropriate for evaluating the real-world
performance of NL2Rigel, which tends to be easily influenced
by task-specific factors such as function types and entity
numbers. Therefore, we base the design of our task gallery on a
design space that we summarize from the detailed grammatical
features of Rigel [11].

An overview of the design space is provided in Table II.
Since a Rigel specification is composed of entities mapped to
different table channels, we divide tabular data transformation
into table structure and entity features. Table structure indi-
cates the fundamental shape of the table. Since it is determined
whether the row/column header is empty and the maximum
number of entities in the channels, we further classify it into
the channel and dimension, respectively. For instance, a row-
oriented table refers to a table without the column header and
the data are grouped by the header of each row (e.g., Fig. 4(I)).
Similarly, a column-oriented table has no row header (e.g.,
Fig. 4(J)) while a cross-tabulation has both the row header
and column header(e.g., Fig. 4(K)). On the other hand, entity
features focuses on different types of entities mapped to the the
table channels. Specifically, we consider the types of functions
by borrowing the taxonomy of [11] and their nesting in the
composition of entities.

We refer readers to the appendix for more examples of
the design space and the detailed tasks in the basic corpus.
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Fig. 6. A scenario of constructing tables from a web page. The user provides an initial NL instruction to convert the copied raw text (B) of the webpage (A)
and perform two rounds of refinement (C, D) on the cells and the table structure to get the desired table (E).

Fig. 7. A scenario of instructing NL2Rigel with a high-level utterance. (A)
The input table and the user instruction. (B-D) The synthesized tables.

To summarize, NL2Rigel is able to support all of the 36
combinations of the conditions mentioned in the design space
above, proving the expressiveness of our approach.

Advanced corpus. We further design an advanced corpus to
demonstrate the generalizability of NL2Rigel by using cases
of real-world scenarios. A full version of the cases can be
found in the appendix. As one typical example, we illustrate
how the journalist Mary constructs a table for her reports while
browsing a book review website.

As shown in Fig. 6(A), the website displays a list of the
best rated books from the 20th century. Mary wants to know
which author has the best ratings, so she imports the copied
texts Fig. 6(B) of the website to NL2Rigel while saying “show
a ranking of the authors by their book ratings”. While the
system generates the target table for her in seconds, she finds
that the ratings of the books are abnormally large (Fig. 6(C)).
Wondering the source of this error, she clicks on an abnormal
cell and subsequently gets informed that the system mistakes
the ratings for the average number of participating users. She
then clarifies her intents to the system with the instruction
“rank by users’ average rating”, which results in the table
in Fig. 6(D). When she checks for the explanation again,
she learns that the mutated column now refers to the average
user rating, which convinces her that her intents are correctly
interpreted. Since Mary is only interested in the most popular
authors, she further fine-tunes the table by keeping records
with the rating above 4 and sorting the ratings, acquiring her
desired table eventually (Fig. 6(E)).

Open-ended transformation. NL2Rigel is also capable of
helping users explore potential tables and handling high-level
user intents, as demonstrated in the following case. Suppose
a teacher named Peter has exported a table (in the format of
.CSV) of the students’ scores on several courses from an online
marking platform (Fig. 7(A)) and wants to perform an analysis
on the academic performance of students. He imports the file
into NL2Rigel with the instruction “What is the performance
of students?” Fig. 7(B-D) shows the synthesized tables, which

contains a cross-tabulation of scores over students and courses,
the score distribution over all courses and their average score.
Through NL2Rigel, Peter manages to generate a diverse list
of multiple tables in parallel within seconds.

VI. USER STUDY

A. Overview

To demonstrate the effectiveness and the usability of
NL2Rigel, we conducted a user study comparing our system
with the interface of Rigel [11].

Participants. We recruited 12 participants (6 males and
6 females, aged 25.5 years on average). The participants
included 7 undergraduates and 5 Ph.D. students from various
academic disciplines, including 6 from Computer Science, 3
from Art, 1 from Medicine, 1 from Biology, and 1 from
Mathematics. Although some of the participants had expe-
rience of using data processing tools (e.g., Tableau, Excel,
MATLAB), all of them reported an average familiarity with
data transformation (M=2.92/5, SD=1.24 on a 5-point Likert
scale) and had never used Rigel or NL2Rigel before. Besides,
all participants were non-native English speakers, and they
reported a moderate proficiency in English communication
(M=3.42/5, SD=0.67).

Systems. The Rigel interface was chosen to be compared
with NL2Rigel for the following reasons. First, both NL2Rigel
and Rigel adopt the declarative grammar in the underly-
ing models and are able to support a wide range of table
transformations, including value-based changes (e.g., averag-
ing, filtering, splitting) and tabular structural changes (e.g.,
transposing and building cross-tabulations). As such, they
fairly reflect the actual user experience in various contexts.
Second, Rigel has shown state-of-the-art usability where users
can directly construct target tables mostly by drag-and-drop
interactions, which is friendly to average users, making it an
ideal comparison target.

Tasks. Table III shows 8 tasks (T1-T8) we designed in the
study. T1-T4 are exactly the same as the tasks conducted in
the user study of Rigel [11], while T5-T8 are newly proposed
in this paper. We kept the following considerations in mind
while designing these tasks. First, the tasks should be diverse
enough to cover the design space in Table II and able to be
performed by the two systems. To this end, the tasks took
relational tables in the form of comma-separated values (csv)
as the input data. Besides, we restricted the corresponding
specifications to only contain the seven operations (split, sum,
average, filter, sort, concat, and count) and at most one nesting
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TABLE III
TASKS FOR THE USER STUDY WITH THEIR DESCRIPTIONS (ALSO USABLE AS EXAMPLE INSTRUCTIONS) AND RIGEL SPECIFICATIONS.

Entities that appear in the schema of the input table are in italics. The specifications of the target tables are shown in a template form where entities are
replaced by capital letters (A, B, ...), and functions are represented as f1:1, f1:N or fN :1 depending on the type.

Task Description (Example Instruction) Rigel Specification Template
T1 Gather the authors for each paper (A), () → (B)
T2 Generate a key for each record (A×B), () → (C + fN:1(A,B))
T3 Remove empty values of Type & build a crosstab of the Number for each (Type, Usage) pair and Name (f1:1(A) ×B), (C) → (D)
T4 Transpose the table (), (A ×B) → (C)
T5 Summarize the Scores for each student and sort in descending order (A), () → (f1:1(f1:1(B)))
T6 Split the Name into first name and last name (f1:N (A)), () → (f1:N (A))
T7 Calculate the average GDP by month and year (f1:N (A)), (f1:N (A)) → (f1:1(B))
T8 For each course, count the students who score lower and greater than 70 (A), () → (f1:1(f1:1(B)) + f1:1(f1:1(B)))

due to the implementation limitation of the Rigel interface.
Second, to balance cognitive load and complexity, we ensured
that the raw data had at most 20 records and 4 entities similar
to Rigel and a single task used at most 4 data functions. Third,
we designed tasks with different complexity of descriptions,
varying from intuitive ones (e.g., “split a name into first
name and last name” in T6) to complicated ones (e.g., “build
a cross-tabulation with multiple entities” in T3). We also
conducted a pilot study to make sure that the tasks could be
finished by both two systems and could be naturally expressed
within 25 words in NL instructions.

Study procedure. We conducted a within-subject study
with two sessions, where the participants were required to
finish the same 8 tasks using Rigel and NL2Rigel respectively,
one system per session. We shuffled the order of the two
systems among the participants to balance the learning effect.
At the beginning of each session, participants were shown a
video tutorial introducing the basic functions of the system.
They could freely use the system and ask questions. The study
proceeded to finish eight tasks when the participants felt they
had got familiar with the system. To avoid bringing bias to
users’ NL instructions, we omitted the textual descriptions and
only gave input and output tables for each task. Specially, we
provided non-NL hints for some tasks whose goals might be
hard to identify at first glance, e.g., formulas for aggregations,
color marks for group-bys, and arrows for sorting. Compared
with explaining the tasks to users in words, we believe these
hints could minimize the bias brought to users’ instructions.
Before performing tasks on the system, participants had to
infer the transformation and confirmed it with the experiment
moderator. They were then given 5 minutes to finish each task,
during which their interactions were recorded. We provided a
2-minute break between the two sessions. Users were asked to
finish post-questionnaires and report their feedback before the
end of the study. The total duration of the study was about 90
minutes and all participants were paid $15 as compensation.

Measures. We utilized two classes of metrics to evaluate
the performance of two systems. From the task perspective,
we calculated the completion rate and time for each task.
For NL2Rigel, We also measured the time spent on giving
each instruction and the total number of instructions provided
to assess how NL2Rigel assisted users in synthesizing trans-
formation pipelines, understanding the pipelines and refining
results. From the user perspective, we included five problem
sets in the questionnaire. The first set used a 7-point Likert

Fig. 8. The number of tasks completed (A) and the time cost for the successful
tasks (B) of the participants when using Rigel and NL2Rigel in the user study.
Generally, the total tasks complete numbers are the same while NL2Rigel
shows a lower time cost in most tasks.

scale to inquire the preference of users to the two systems
on the same six sub-scales as NASA-TLX [80]. It was then
followed by four sets of 7-point NASA-TLX scales, with three
sets regarding the user experience in instructing to synthesize
the first table, understanding transformation pipelines and
refining the results, respectively. The final set collected user’s
overall degree of satisfaction of the NL2Rigel system.

B. Qualitative Results

1) General Reactions: It is widely acknowledged that NL
interactions are intuitive and natural to users in numerous
fields, including data transformation [16]. Our study strength-
ens this result with a consensus over the participants on
NL2Rigel’s low learning cost and the benefits of its end-to-
end table generation in saving users’ mental efforts to some
extents, such as decomposing table construction tasks into
concrete operations or into a formal specification like Rigel.
In addition, all participants appreciate NL2Rigel’s support for
various expression styles, which is friendly to novice users.

2) The effectiveness of multi-step table construction:
NL2Rigel features a multi-step table construction approach
where users can first directly construct a table through a
general NL instruction and then refine it afterwards. Over-
all, most participants (10/12) found this method helpful in
their data engineering practices. P5 thought the workflow of
NL2Rigel resembles the “overview first, then details” rationale
and naturally matched her thinking style. However, more than
half of them (8/12) also mentioned the mental pressure brought
by coming up with a general task expression, especially in
complex tasks that are hard to describe and more suitable
for a progressive workflow. Some participants also said this
might be due to their suspect of the system’s capabilities and
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Fig. 9. Quantitative results of the user study. (A) Results of the 7-point Likert scale on participants’ preference for Rigel and NL2Rigel on 6 criteria. (1:
Strongly prefer NL2Rigel; 7: Strongly prefer Rigel) (B-E) Results of the 7-point NASA-TLX scale on participants’ perception of NL2Rigel in terms of three
individual steps during the workflow (table synthesis (B), understand the transformation (C) and table refinement (D)) and in general (E). (1: A low level of
demand/effort/frustration perceived; 7: A high level of demand/effort/frustration perceived)

therefore they were more cautious when giving utterances.
Nevertheless, P1, P3 and P7 claimed this style of table
construction is “pedagogical”, which might help users organize
the ideas in mind before performing a task. In particular, P1
believed this merit is further emphasized when compared with
Rigel. “When using NL2Rigel, I gradually formed a clear goal
and got what I want. While in Rigel, I often finished tasks by
coincidence through arbitrary drag-and-drops with my mind
empty.(P1)” To conclude, the table construction method of
NL2Rigel is effective and thought-provoking for various users
and can get better with potential improvement in reducing
expression efforts.

3) Refine results through NL: precision v.s flexibility:
NL2Rigel allows users to use NL to refine the generated target
table with different granularities. While most participants were
satisfied with the performance, we also received some negative
feedback. Four participants(P4, P6, P11, P12) expressed their
wish that manual fine-tuning is also supported for some
frequently-used operations such as sorting and deleting a col-
umn, which is more close to their habits and sometimes failed
with NL. P9 and P11 also hoped the system becomes more
intelligent so that the scope of refinement can be automati-
cally inferred. On the other hand, there also exist users who
appreciated the flexibility of NL during table refinement. P10
commented that she was excited to realize some customized
minor changes through NL such as making a column listed as
a row. In general, NL gives users a higher degree of freedom
and flexibility that has the potential to support wide-ranging
mutations, while manual interactions can complement NL in
some common patches for their precision.

4) Beyond inspection: from reactive to proactive: As re-
flected by prior work, users tend to get confused about the
transformation process without some explanatory information.
To this end, NL2Rigel provides three divisions of information:
detailed intermediate results, a dataflow diagram and NL
descriptions for a given cell. Our observation is that although
none of the participants checked all the provided information,
most of them benefited from at least one function. In particular,
seven participants expressed their preference for the dataflow
diagram. (P4: “This graph was pretty straightforward and
the color encoding was super distinctive.”) Meanwhile, four
participants pointed out the helpfulness of the extracted-table
view and derived-entities panel. (P9: “I barely glanced at

the pipeline graph because the (extracted) table and entities
here were compact and clear enough.”) Two participants also
mentioned the potential usefulness of the NL description
provided when a cell is clicked, with P6 further suggesting
including formulas when the dataset is relatively small. To
conclude, the strategies for explanation adopted by NL2Rigel
are complementary and have the ability to meet the demands
of various users.

On the other hand, there also exist some participants
that require a more effective style of communication with
the system. For instance, T4 requires users to transpose a
given table. Because she had no idea about the terminology
“transpose”, P2 initially wrote “make the rows columns and
columns rows” and ended up getting a cross-tabulation of
the original table. “...From the pipeline diagram, you can
easily grasp how the table is constructed...But I still can’t get
why the system got me wrong(P2).” Similarly, P6 gave the
instruction “create a new column of... and put it after the third
column” in T2. In this case, NL2Rigel did correctly create
the column but put it in a wrong place. “Of course the system
partially understands me. But what about the failed parts?(P6)”
In a word, explanation for the transformation results should
go one step further from visualizing the conversion process
to resolving user-specific confusions. Future systems may
offer more interactions to help users proactively seek needed
information apart from understanding pre-generated contents,
such as asking the “why” questions [16], [81] or requesting
for explanation of how the system interprets specific phrases
in their NL instructions.

C. Quantitative Results

Task completion rate. As depicted in Fig. 8(A), the
participants manage to finish the same number of tasks using
both Rigel and NL2Rigel (86 out of 96), which indicates that
NL2Rigel has a comparative task success rate. In particular,
half of the failed attempts (5 out of 10) in NL2Rigel origin
from T3 and about one fourth come from T7 (2 out of
10), which both require users to build a complicated cross-
tabulation and remove invalid values at the same time and
is therefore hard to describe in a few words. Besides, a few
users got frustrated after several times of rephrasing and gave
up eventually (P1 on T3, P2 on T7 and P11 on T2). There is
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also one occasional case due to the temporary failure of GPT-
3.5 API (P9 on T8). In contrast, apart from 2 give-up cases (P1
on T2 and T3), failure cases in Rigel are due to the timeout
mainly caused by user’s misunderstanding of the underlying
declarative grammar or improper use of data functions.

Consumed time. The total time cost of participants for
the successful tasks is illustrated in Fig. 8(B). The results
show that participants generally spent less time on the tasks in
NL2Rigel than in Rigel. Specifically, this advantage was most
prominent in T1, T4 and T6, all of which were easy enough
to express within 10 words. However, for tasks that were
more verbally challenging such as T3 and T7, we observed
no significant decrease in the time cost compared to Rigel.
Besides, there were slightly more outliers for NL2Rigel than
Rigel (3 vs 1). We hypothesize from these statistics that
the performance of NL2Rigel may vary depending on the
expression abilities of individual users.

Workload. Fig. 9 shows the users’ perception of workload
while comparing two systems and their perception when using
NL2Rigel. As for the comparison, our participants generally
perceived a lower level of workload and spent less effort on
the tasks in NL2Rigel (Fig. 9(A)). As for the perception of
NL2Rigel, most participants were satisfied with the overall
performance and individual performance of the workflow
steps. They also showed no significant indication of demand
and frustration, which demonstrates that our system is user-
friendly and easy to use. However, We also observed a few
users who claimed to be neutral or favored Rigel, mostly due
to the frustration brought by the incorrect results of NL2Rigel
and their struggle in articulating satisfactory NL expressions.

VII. DISCUSSION

This section presents our reflections on the failure cases, the
implications, the limitations, and the future work of NL2Rigel.

A. Failure cases

During the development and the user study of NL2Rigel,
we also observed some failure cases that require additional
research efforts to address appropriately. We discuss them from
the following three major perspectives, i.e., data-side, LLM-
side, and user-side failures.

Data-side failures. There are a few unsuccessful cases
mainly caused by issues with the raw data. We have identified
two typical classes of issues: (a) non-uniform or implicit data
structure, and (b) poor data quality with missing values, empty
lines, or irrelevant information. A concrete case of data-side
failures is that when testing the example case in the advanced
corpus of our task gallery in Section V, we initially used the
HTML file of the webpage in Fig. 6(A) as the system input.
In this case, NL2Rigel had difficulty generating the correct
script to extract data from this file, because it was cluttered
with irrelevant information such as figures and icons. Although
manually cleaning this file is feasible, we ended up directly
copying data from the webpage to a textual file (Fig. 6(B))
as the input for NL2Rigel. Besides, there is no significant
evidence that data in specific formats are more or less likely
to be extracted.

Currently, the failures are exposed to users in two ways.
When the GPT-3.5 model cannot generate executable scripts
within 5 re-runs, an error message is sent to the user. Alter-
natively, users may inspect the extracted relational table to
detect errors. We have attempted to alleviate the problem by
allowing users to manually edit the generated relational table
in the extracted-table view (Fig. 3(B1)), which supports fixing
certain problems such as error values. However, considering
data cleaning is beyond the main focus of this paper and
also a process that is arguably arduous and demanding in
manual efforts [33], our current design is modest to some
extent. Future work may enable users to edit the generated
code for data extraction or embed semi-automatic approaches,
such as offering metrics of data quality and usage [82], [83]
or designing tailored LLM-based pipelines to recommend data
cleaning operations.

LLM-side failures. We have also observed that a significant
proportion of unsuccessful cases are caused by LLM’s inability
to generate valid results for a sub-task within several attempts
(5 in our implementation) or misinterpretation of the user’s
intent, even when the NL instruction is clear and unambiguous.
For example, when testing the system with the task in the
usage scenario (Section III), we observed the following errors:

a) Misunderstand the task. When the user asks to compute
the total sales, the LLM simply made an aggregation over
the Unit Price entity instead of the sales of each order.

b) Output invalid specifications. When calculating the sales
for each order, the LLM directly multiplied Order and
Unit Price without extracting the Quantity by splitting
the orders. We hypothesize that the LLM had difficulty
identifying the implicit data types, such as numerical and
categorical entities. Besides, there were also cases where
the specifications generated by the LLM failed to meet the
grammatical rules of Rigel or our restrictions on the output
format even if they had been specified in the prompt.

c) Output values instead of specifications. When tested on a
dataset with only a few records, the LLM directly output
the concrete value of the total sales instead of following
the instructions in the prompt. As a related note, this phe-
nomenon was also observed when the given transformation
task was easy enough to be resolved with fewer than 2
functions used in the Rigel specification.

d) Generate buggy scripts. The code for data extraction gener-
ated by the LLM led to unexpected results when executed
on the raw data. In a typical case, the LLM generated a
program where the number of iterations to extract the data
was hard-coded based on the sampled data.

The effort NL2Rigel devotes to mitigating these issues
is two-fold. From the engineering perspective, we perform
syntactic checks and re-run relevant sub-tasks of the workflow
in case of errors, which helps to reduce failures due to invalid
results such as the problems b)-d). However, since no guidance
is provided for further executions when an invalid result is
found, there is high randomness in the regenerated results, and
the number of reruns required may vary. We encourage future
work to propose strategies for diagnosing runtime problems
and studying the effect of dynamically altering the prompt
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to handle identified problems. From the interface perspective,
we propose a data flow diagram and fine-tuning interactions
to facilitate understanding and refining the transformation
pipeline. While it is helpful in most cases, it can be arduous
for users to debug the transformation through NL instructions
when the results deviate too much from their expectations.
We suggest that a promising direction is to propose targeted
datasets and fine-tune the LLMs for better performance.

User-side failures. These failures are mainly caused when
users provided an ambiguous NL instruction that LLM mis-
understood. Our user study has demonstrated that users tend
to use colloquial descriptions (e.g., “make the rows columns
and columns rows”) on unfamiliar transformations, such as
table transposing and folding, and therefore often underspecify
the task. Besides, when the user desires a table with multiple
transformations but provides a general NL instruction that
lacks sufficient transformation details, the system performance
can deteriorate. For instance, given an abstract query “show
me the sales of the best-performing car models as a table”,
the system may fail to map the word “best-performing” to
appropriate operators, i.e., sort and filter. It also tends to
recommend basic tables as synthesized results, such as the
tables in Fig. 7(B-D). We hypothesize one of the underlying
reasons is our prescriptive style of prompting, and the issue
is likely to be mitigated by including more examples with
ambiguous or highly abstract utterances in the prompt or fine-
tuning the model with datasets.

Meanwhile, although NL2Rigel is designed with no pre-
requisite skills or knowledge in table synthesis, the lack of
domain knowledge (e.g., table-related jargon) and familiarity
with the system for users also contributes to these cases to
some extent. One promising solution is to recommend revised
NL instructions to users after they provide an utterance, where
users may identify the ambiguity of the previous instruction
and gradually pick up the skills for composing accurate and
interpretable instructions [64], [84]. We plan to integrate this
technique into the system in the future.

To conclude, we hypothesize that the system is better at
handling concrete tasks, whereas its performance in processing
abstract NL is limited by the degree of semantic ambiguity, the
task domain and complexity, and the understanding abilities
fostered by the examples provided in the prompts. A thorough
investigation of the input limits may require a versatile tailored
dataset and we leave it as future work.

B. Implications
This paper presents NL2Rigel, an end-to-end interactive

system for synthesizing and improving table transformations
with NL instructions. By leveraging NL, users have high
flexibility and low learning costs in customizing the data
transformation pipelines and refining the result tables. Fur-
thermore, the system is able to process large-scale datasets
theoretically, though in practice its performance may depend
on factors like the intricacy of transformation tasks due to the
time complexity of Rigel’s computation module. We discuss
a list of implications we gained as follows.

Table verification and debugging. Numerous research has
shown tabular data is error-prone in the real world given

common issues like missing values or wrong row/column
headers [71]. In the context of automatic table generation,
the boundary of such anomalies can be extent to unexpected
results or system internal errors [16]. The lack of support for
detecting and handling errors has long been a shortcoming
of both end-to-end systems [58] and table construction [16].
In NL2Rigel, we address this limitation by providing inter-
mediate results including an extracted relational table and
derived entities, a diagram of transformation pipelines, and
explanations of the selected cells in the end-to-end workflow.
In addition, we allow users to interactively debug target tables
by providing supplementary NL instructions. In this way, users
can naturally reason about the transformation process and
refine the result tables. Besides, since the generated tables are
correct as long as the transformation process is verified, our
table examination strategy avoids the inefficient inspection of
table details and is scalable to large input data.

Application of LLMs. NL2Rigel is among the first studies
that takes advantage of the reasoning abilities of LLMs in
the data transformation community. Although there also exist
some LLM-side applications in many other areas [62]–[64],
[66], our work contributes to this emerging trend in the follow-
ing factors. From the perspective of the interface, we showed
a tailored NLI empowered with LLMs to solve complex
content generation tasks like end-to-end table synthesis. This
may serve as a preliminary glimpse into the future interfaces
for more complex data-side tasks. In terms of the approach,
NL2Rigel interprets users’ NL instructions by chaining mul-
tiple LLM layers [63], which is applicable to other domains,
such as visualization authoring which also generates domain-
specific languages like Vega-Lite [61]. Moreover, we devel-
oped a new strategy for human-LLM collaboration, where
LLMs are continuously used for generation, explanation, and
iteration, lowering the barrier to interacting with the system.

C. Limitations and Future Work

We identify five limitations of NL2Rigel. First, considering
that the system currently only samples the preamble of data
and relies on the LLM to interpret its internal structure, our
approach may be limited in handling data that is structured too
implicitly or with quality issues. This can be addressed with
more robust sampling strategies, such as sampling different
parts of data in parallel. Another solution is providing infor-
mation about data quality to help users examine the extracted
table, especially when a large dataset is encountered. Second,
the performance of NL2Rigel could be closely relevant to that
of the underlying LLM and prompting method. Although we
optimized the performance of LLM through prompt engineer-
ing, failure cases may still exist. We hope future research
may contribute public NL-to-table datasets, which can be used
to fine-tune the LLMs or train tailored models. Meanwhile,
future work may further refine the prompts we used in our
approach with more powerful LLMs. Third, the performance
of NL2Rigel may also be restricted by the intrinsic drawbacks
of declarative languages, which often excel at encoding the
overall table structure rather than detailed value changes.
Besides, the current implementation only supports a limited
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number of data functions. One potential solution is redesigning
the functions to enable the inclusion of simple embedded
scripts as parameters, extending the expressiveness of the
current function set with a lightweight mutation. Finally, the
design of our user study has some limitations. We do not
include open-ended tasks in the user study and the design
of tasks are somewhat conservative to fit both systems. The
usefulness of system-initiative recommendations for NL in-
structions is also not very well studied.

We have also identified some problems that deserve further
systematic investigation. First, while we believe our system
can be leveraged by users with various expertise, further em-
pirical research is necessary to validate the extent of benefits
experienced by different user groups. We plan to study these
problems in detail in the future. Meanwhile, it is also unclear
how our LLM-based approach fares compared to traditional
machine learning methods that typically utilize grammar-based
algorithms for parsing NL and feature task-specific models.
Comparing and contrasting these approaches can contribute to
a better understanding of the value brought by the LLM to
our system. We encourage future researchers to conduct more
thorough empirical studies on these issues.

VIII. CONCLUSION

This study presents NL2Rigel, an interactive system that
helps users synthesize and enhance tables from semi-structured
text using natural language instructions. During the conversion
process, NL2Rigel takes advantage of the reasoning abilities of
large language models and translates the user instructions into
the specifications of Rigel, a recently developed declarative
language for tabular data transformation. An intuitive inter-
face is also developed to assist users in understanding this
process and refine the tables through providing supplementary
instructions. To evaluate NL2Rigel, we design a task gallery
showing its expressiveness and perform a comparative user
study with Rigel to demonstrate the usability and effectiveness
in reducing user efforts.
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