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Abstract— Understanding how local environments influence individual behaviors, such as voting patterns or suicidal tendencies, is
crucial in social science to reveal and reduce spatial disparities and promote social well-being. With the increasing availability of
large-scale individual-level census data, new analytical opportunities arise for social scientists to explore human behaviors (e.g., political
engagement) among social groups at a fine-grained level. However, traditional statistical methods mostly focus on global, aggregated
spatial correlations, which are limited to understanding and comparing the impact of local environments (e.g., neighborhoods) on
human behaviors among social groups. In this study, we introduce a new analytical framework for analyzing multi-variate neighborhood
effects between social groups. We then propose NeighViz, an interactive visual analytics system that helps social scientists explore,
understand, and verify the influence of neighborhood effects on human behaviors. Finally, we use a case study to illustrate the
effectiveness and usability of our system.

Index Terms—Neighborhood Effects, Social Groups, Spatial Data, Visual Analytics

1 INTRODUCTION

Spatial data is prevalent in various social science disciplines, such as
political science, sociology, and public health. The spatial differences in
the correlations among variables (e.g., demographic and socioeconomic
variables) have raised numerous research questions, particularly in the
studies of neighborhood effects [25] and social group comparisons [5,9].
For example, poor Americans exposed to neighbors from a broader
range of socioeconomic classes tend to have better financial outcomes
[10, 11]. Likewise, neighborhood centers promoting social interaction
among the elderly are associated with reducing depressive symptoms,
especially in low socioeconomic neighborhoods [22].

Traditional neighborhood effect analysis in social science is pri-
marily hypothesis-driven with a focus on a broad social group at a
coarse-grained level (e.g., the elderly in one particular city) due to
limited high-granular datasets [33]. However, the recent availability
of large-scale individual-level geospatial datasets (e.g., L2 Voter and
Consumer Data [19]) has provided experts with new opportunities for
analyzing detailed neighborhood effects across social groups, such as
partisan segregation in activity space [34] and the adoption of prosocial
behavior in different partisan areas [3]. Nevertheless, the expansion
in data volume and the high diversity of variables introduce new data-
driven analytical demands for variable selection, spatial modeling, and
comparative analysis between groups. Social scientists who adopt such
datasets often face challenges in exploring, interpreting, and compar-
ing the modeled neighborhood effects among diverse social groups in
an effective approach. For instance, scholars may observe a negative
association between neighborhood socioeconomic status and voting
participation at the aggregated level in the model results, but they can-
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not easily understand the variations across neighborhoods and social
groups from numbers. Better tools are desired to help social scientists
dive into specific contexts and examine how voting participation differs
across neighborhoods.

Visual analytics thus offers a promising solution to overcome the
aforementioned analytical demands by utilizing intuitive visual rep-
resentations and interactions. However, developing a visualization
system for analyzing neighborhood effects over various social groups
still poses three challenges. First, conventional social science method-
ologies lack a coherent workflow for multivariate spatial analysis that
effectively surfaces neighborhood effects on social groups. Most ap-
proaches involve multiple separate models and tools (e.g., statistical
and geographic information systems (GIS) software), which require
much effort to go back and forth between different analytical steps.
Second, visually presenting the complex spatial and social relationships
among different neighborhoods and social groups is difficult. Previous
work has focused on visualizing either spatial patterns [13, 31] or mul-
tivariate social groups [29]. It is essential to bridge the gap between
these approaches with unified representations that support the effective
analysis of both spatial and multivariate social group data. Third, de-
signing a visualization system to support social scientists in exploring,
analyzing, and verifying insights in an interactive and rigorous manner
is a non-trivial task. Multiple coordinated views are required to support
data-driven and intuitive exploration. Moreover, providing the experts
with contextual details is also necessary to verify their findings.

To address the first challenge, we formulate a data abstraction (Sec-
tion A.1) and characterize the problem domain of neighborhood effects
on social groups with our experts. We then propose an analytical frame-
work combining data-driven techniques with domain-specific models.
For the second challenge, we apply visualization techniques (e.g., 1D
Map Projection and Parallel Sets) to reveal neighborhood effects and
inter-group differences, enhancing comprehension of complex spatial
and social relationships. For the third challenge, we present NeighViz, a
visual analysis system that aids social scientists in modeling, exploring,
and verifying neighborhood effects on social groups across social sci-
ence issues. We evaluate NeighViz through a case study with a domain
expert to showcase its effectiveness and usability.

2 REQUIREMENT ANALYSIS

Incorporating both neighborhood effects and social group analysis
is essential for a holistic understanding of social dynamics and the
complex relationships between people and their environments. To
facilitate the generation of hypotheses about the neighborhood effect
on social groups with the power of a visual analytic system, we have
collaborated with two social scientists (EA and EB) in sociology over
the past year. Though our system primarily targets social scientists who
lack proficiency in geospatial analysis, we also sought consultation with
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Fig. 1: NeighViz comprises the backend (A1-A7) and the frontend modules (B1-B6). Data is initially preprocessed and stored in the database (A1)
and then aggregated via a Data Query Engine (A2) based on user-selected demographic attributes (1-1) for social group analysis. The filtered
data is then sent to the data analysis pipeline (A3-A7, Section 3). The six visualization views (B1-B6, Section 4) interact with backend components
through HTTP requests, facilitating interactive data analysis (1-1 to 4).

a GIS expert (EC) about spatial modeling. Based on their traditional
analytical approaches, we have summarized a three-stage workflow for
the modeling, exploration, and verification of the neighborhood effect
on social groups as follows.
Model Generation. In the first stage, experts aim to get an overview
of potential factors for the specific social problem and identify a target
social group for in-depth analysis:
T1: Selecting variables for the spatial model. Experts usually start
from the variable selection process with a global model (e.g., Ordi-
nary Least Square (OLS)). The system should support both univariate
and multivariate exploration via intuitive visualization. Additionally,
it should also help detect issues lying in model robustness, such as
multicollinearity and spatial autocorrelation.
T2: Identifying social groups for further exploration. Selecting
a social group of interest from various possibilities (e.g., based on
multiple demographic attributes, such as Whites with college education)
based solely on domain knowledge can be challenging. A data-driven
approach is thus essential to help experts identify groups based on the
spatial heterogeneity of the spatial global model, and focus on it in the
subsequent local-level analysis.

Geographical Exploration. After locating factors and social groups of
interest, the experts will conduct local spatial analysis to identify and
understand neighborhood effects:
T3: Exploring geographical distribution. Scalable visualization
should be designed to reveal the various spatial attributes (e.g., multi-
dimensional raw data and outputs of the spatial model) and facilitate
comparisons through geo-distribution. Conventional 2D maps are
difficult to compare multiple variables intuitively.
T4: Detecting areas with potential neighborhood effect. One core
task for experts is to detect and explore neighborhood effects. Thus,
the system should cluster spatial units into neighborhoods with shared
characteristics and internal cohesion based on expert-focused attributes.
Moreover, novel visualization is required to reveal contextual infor-
mation about each neighborhood, such as the statistical summary and
spatial spillover [26], to help understand and interpret such effects.

Comparison and Verification. Based on spatial patterns, the next step
is to drill down to additional contexts beyond the spatial model and
statistics to interpret specific neighborhood effects. However, experts
usually need to switch between multiple data sources and software to
gain such insights, which is laborious and inefficient:
T5: Comparing across social groups. To comprehend the driving
factors of the neighborhood effects on a specific social group, experts
want the tools to support the comparison of different social groups.
The system should use visual comparison techniques to help compare

groups with multiple attributes.
T6: Verifying and explaining neighborhood effects. In addition to
group comparison, qualitative geo-information is also important for the
expert to learn the neighborhood environments and interpret the factors
affecting the residents’ behaviors.

3 NEIGHBORHOOD EFFECT ANALYSIS FRAMEWORK

We propose a web-based application consisting of a backend and a
frontend (see Fig. 1) for analyzing neighborhood effects on social
groups (more implementation details available in Section A.2). This
section focuses on the data analysis pipeline in the backend (Fig.1-
A3 to A7), which combines conventional and advanced social science
analysis methods. We developed the pipeline based on the social
science literature [8, 30, 35, 36] with our domain experts.

Linear Model. We initially use ordinary least-square (OLS) as the
baseline model to explore variable relationships (Fig. 1-A3), where y
represents the dependent variable and X represents the independent
variables selected by users (Fig. 1-1-2).

y = Xβ + ε (1)

However, OLS treats spatial units as independent observations, neglect-
ing spatial dependencies by neighborhood effects. To measure spatial
dependencies in the model, we compute Moran’s Index [23]. A high
Moran’s Index indicates unaccounted spatial dependencies.

Spatial Global Model. To account for spatial dependencies, we
transition from the OLS to Spatial Durbin Model (SDM) [20]. The
SDM equation includes additional terms for the spatial lag in dependent
(ρWy) and independent variables (γWXβ ), reflecting the influence from
neighboring spatial units. A spatial weight matrix (W ) determines the
extent of this influence, which is the Gaussian kernel by default but also
supports various kernel-based and contiguity-based weighting methods.

y = Xβ +ρWy+ γWXβ + ε (2)

However, as a global model, SDM cannot effectively address spatial
heterogeneity due to location-specific factors (e.g., culture and history).
Consequently, Moran’s Index is utilized again to detect spatial hetero-
geneity in SDM results. The Moran’s Indices for both OLS and SDM
(Fig.1-2-1) of all the social groups will be computed and displayed in
the frontend (Fig.1-B2). Users can rank groups based on these indices
and choose a group of interest for further local analysis (Fig.1-2-2).

Spatial Local Model. To explore spatially varying neighborhood
effects over places, we extend the SDM to the Geographically Weighted
Regression (GWR) model [7] (Fig. 1-A5). GWR, a local regression
technique, estimates a set of regression coefficients for each spatial unit,



Fig. 2: The system interface of NeighViz. (A) The Variable View supports the variable selection for the spatial model using the Correlation Matrix . (B)
The Social Group View summarizes global model results and Moran’s Indices for social groups to help group selection. (C) The Projection View
offers a regionalized overview of spatial distributions of attribute values and spatial local model coefficients in 1D Projection Bars. (D) The Map View
uses a choropleth map to show the spatial distribution of a selected variable, with cluster glyphs summarizing variable statistics and spillover effects
of neighborhood clusters. (E) The Cluster View lists variable distributions of different neighborhood clusters. (F) The Detail View provides detailed
information of a specific cluster via the Parallel Sets Chart and the street view.

considering spatial heterogeneity and Tobler’s First Law of Geography
[27] with the following equation.

yi = Xiβi(ui,vi)+ρWiyi + γiWiXiβi(ui,vi)+ εi (3)

The GWR model is similar to OLS and SDM while including
βi(ui,vi), a function that depends on the spatial coordinates of spa-
tial unit i (ui and vi). It estimates the spatially varying coefficients at
each location by giving more weight to nearby observations and less
weight to more distant observations. The GWR model generates unique
coefficients per variable per spatial unit. These coefficients are used in
the subsequent steps of Regionalization and Spillover Effect Analysis.

Regionalization. To assist in the identification of areas that demon-
strate potential neighborhood effects, we apply regionalization to pro-
cess outputs of the spatial local model, where each spatial unit is
characterized by a model coefficient for each variable. Regionalization
groups spatial units into regions based on similar attribute values and
model coefficients, thereby facilitating the discovery of latent neighbor-
hoods with similar characteristics (Fig. 1-A6). We implement spatially
constrained hierarchical clustering, which combines elements of hier-
archical clustering with spatial constraints, ensuring that the resulting
clusters are both internally homogeneous and spatially contiguous. The
number of clusters is set to 5 by default and can be adjusted by users.

Spillover Effect Analysis. To explore the dynamics of the spillover
effect in different regions, a local spillover effect algorithm has been
developed. This algorithm utilizes the coefficients of the spatially
lagged variables in the spatial local model as its input. It computes the
magnitude and direction of the spillover effect from each spatial unit to
its neighboring units. (Fig. 1-A7). For each neighboring unit j of the
focal unit i, we multiply the coefficient of spatially lagged variables,
γ j(u j,v j), with the weight Wi j:

Si j = γ j(u j,v j) ·Wi j (4)

We then calculate the relative direction of j to i and categorize the
direction into one of the 16 cardinal directions. We finally aggregate
the strength of the spillover effect of variables in 16 cardinal directions
for the focal spatial unit.

All the analysis results in the pipeline are fed into the six visualiza-

tion views (Fig. 1-B1 to B6) for interactive analysis.

4 VISUAL DESIGN

NeighViz features six views to support the analytical tasks in Section 2.
The expert can start from the Variable View (Fig. 2-A) to select variables
and generate spatial models based on the multivariate analysis using
the Correlation Matrix (Fig. 2-A2) (T1). Next, the expert can compare
the model results of different social groups in the LineUp Table [15] in
the Social Group View (Fig. 2-B), and select an interesting group for
further analysis (T2). Through Projection View (Fig. 2-C) and Map
View (Fig. 2-D), the expert can explore the geographical information on
the clusters that are regionalized based on the model’s coefficients (T3,
T4). Meanwhile, the Cluster View (Fig. 2-E) is provided to investigate
the detailed distributions of variables with multiple density histogram
charts. Finally, the expert can zoom into a cluster of interest and utilize
the Detail View (Fig. 2-F) for in-depth details. Detail View supports
social group comparisons through randomly sampled individual data
displayed on Parallel Sets Chart [18] (Fig. 2-F1), and neighborhood
context exploration via Google Street View [14] (Fig. 2-F2) (T5, T6).
In the following section, we introduce two main views, Projection View
and Map View, in detail.

4.1 Projection View
The Projection View (Fig. 2-C) uses 1D Projection Bars to show the
spatial distribution of attributes in regionalized clusters (T3).

Description: each Projection Bar (Fig. 2-C1) corresponds to a vari-
able and is partitioned based on regionalization, with cluster segment
bars showing the scope of clusters at the top (Fig. 2-C2). We apply
binary tree traversal to generate Projection Bars as a dimensionality
reduction approach [12]. Specifically, we use agglomerative hierarchi-
cal clustering for the regionalization (Section 3). Then, we use the leaf
order of the dendrogram to project the variables from the 2D map to 1D
Projection Bars. The normalized value of each spatial unit is encoded
using a color scale from light yellow (lowest) to dark red (highest).
Users can customize regionalization parameters to fine-tune the results
(Fig. 2-C3). They can also click a Projection Bar to show the detailed
distribution of a variable in the Map View with the same color scheme.
We first tried small-multiple maps to show variable distributions [17,28].



However, they became unscalable and hard to compare as the number
of variables increased. Thus, we chose the projection method to show
multivariate spatial distributions in a compact way.

4.2 Map View
Although the Projection View shows variables compactly, it loses part
of the spatial relationships. The Map View thus provides more details
with a 2D map (Fig. 2-D) (T3), which includes cluster glyphs showing
aggregated statistics and spillover effect in clusters (T4).

Description: our design uses a choropleth map to show the spatial
distribution of a chosen variable, with the same color encoding in the
Projection View. We specifically designed a cluster glyph (Fig. 2-D2,
D3) for each spatial cluster to show the statistics and illustrate the
within-cluster spillover effect. The inner layer is a radar chart showing
the mean values of selected variables across all spatial units of a cluster,
with each axis representing the normalized mean of a variable. The
outer layer reveals the spillover effect of the spatially lagged variables
along 16 cardinal directions as described in Section 3, presented as a
closed cardinal curve. The radius of the curve along each direction
represents the mean magnitude of the spillover effect of the spatial units
within that cluster, and a larger radius indicates a stronger influence of
the cluster along that direction. Users can click on a glyph to highlight
other information about this cluster in multiple views (Fig.1-4).

5 CASE STUDY

We applied NeighViz to study relations between race and political en-
gagement in the US. Specifically, we used data from the L2 Voter and
Consumer Data [19] that contains 180 million registered voters in the
US. We focused on New York City as a demonstration. To study neigh-
borhood influence on political engagement, we used the voter turnout
rate ( Number o f votes cast

Total number o f eligible voters ) in general elections as the dependent
variable. The data were aggregated to the census block group (CBG)
level as described in Section A.1. We invited the political scientist
EA (Section 2) to freely explore the system and finally organized his
observations into a case as follows.

Model Generation. EA began his study in Queens County for its
cultural diversity, starting with the 2016 election data. Intrigued by the
potential impact of racial segregation on the turnout rate, he selected
the race ratios as independent variables, together with other potential
factors, including education, income, and age. Then he noticed a high
correlation between the Education Index (EI) and Income Index (II)
in the Correlation Matrix (Fig. 2-A2). To prevent multicollinearity,
he excluded II. He added a spatially lagged variable of the turnout
rate to study the voting behavior spillover effect. For social groups,
he selected edu and race attributes to examine social group voting
patterns. The final model and the resulting social group analysis are
presented in the Social Group View (T1). The LineUp Table in the
Social Group View shows lower Moran’s Indices for the Spatial Durbin
Model (SDM) than the Ordinary Least Square (OLS), indicating better
spatial dependence captured by the SDM. Noticing that the “no college”
group had the highest Moran’s I for SDM (Fig. 2-B1), EA inferred its
spatial heterogeneity wasn’t fully captured. Consequently, he employed
the Geographically Weighted Regression (GWR) on this group to delve
deeper into its local-level neighborhood effect. (T2).

Geographical Exploration. The GWR model coefficients were then
automatically regionalized into 5 clusters, showing distinct correlations
between independent and dependent variables. EA used glyphs in the
Map View (Fig. 2-D2, D3) to compare cluster statistics and quickly
found that clusters 1 (blue) and 4 (red) were intriguing. “Two adjacent
regions: cluster 5 has an extremely high Asian Ratio, but cluster 2 looks
more diverse. And why the spillover effect of cluster 2 is much stronger
than that of cluster 5?” He then clicked the two glyphs to highlight
the clusters in Projection View, Map View, and Cluster View (T3, T4)
to for more details. The Projection View (Fig. 2-C1) confirmed the
racial diversity in cluster 2 and racial segregation in cluster 5. Several
model coefficients varied between clusters, leading him to conduct a
closer comparison using Cluster View. The density histograms (Fig.
2-E1) showed a negative correlation between Asian concentration and
less-educated voter turnout in cluster 5, while cluster 2 exhibited the

reverse. EA commented it might illustrate the dynamics of the ethnic
enclave theory [16] and that community diversity could enhance politi-
cal participation among less-educated minority populations, accounting
for stronger voting spillover in cluster 2 (T3, T4).

Fig. 3: The neighborhood effect was compared and verified in detail. (A1)
The Parallel Sets Chart revealed high voter turnout among Asians in
cluster 2, especially Asians with college degrees. (A2) The Parallel Sets
Chart indicated a low voting rate among Asians in cluster 5, regardless
of their college attendance. The maps and street views of cluster 2 (B1,
C1) and cluster 5 (B2, C2) showed that they are located near Forest Hills
and Flushing, respectively.

Comparison and Verification. To delve deeper, EA compared social
groups, selecting college graduates for comparison (T5). Parallel Sets
Chart right bars confirmed that cluster 2 had an evenly distributed
racial mix (Fig. 3-A1), whereas cluster 5 was predominantly White and
Asian (Fig. 3-A2). Strand widths showed higher voter turnout among
White college graduates in both clusters, but Asian voter turnout was
inconsistent. This emphasized the spatial heterogeneity of political
landscapes and varying Asian political participation, leading EA to
wonder about the exact locations of these clusters. EA virtually toured
clusters 2 and 4 via the Street View (T6) and identified cluster 2 as Forest
Hills (Fig. 3-B1, C1), a diverse, family-friendly neighborhood. He
noted the northwest-southeast orientation of the boundary and inferred a
strong localized spillover of voting. Cluster 5 overlapped with Flushing
(Fig. 3-B2, C2), known for its Chinatown and high renter population,
and suggested weaker social ties could limit voting spillover. Finally,
he reflected, “An ethnic enclave leads to lower voter turnout among
the Asian population, but a diverse community can boost political
participation. I’ll examine more U.S. regions for this pattern. ”

Expert Feedback. We gathered feedback from our experts in Sec-
tion 2 (EA-EC). All experts thought NeighViz provided a streamline for
effectively exploring the neighborhood effect on the political engage-
ment of minority social groups, offering valuable insights for future
studies. Specifically, EB suggested that the analysis framework could
be generalized to study the neighborhood effect of income inequality.
EA appreciated the projection bars and spillover glyphs that make the
model results intuitive to explore and understand. EC, as a GIS expert
in econometrics, suggested including rigorous statistical testing in spe-
cific steps in the framework, yet she still appreciated the usefulness of
NeighViz to generate hypotheses for further studies.

6 CONCLUSION

In this study, we present NeighViz, an interactive visual analytics sys-
tem to help social scientists model, explore, and verify neighborhood
effects on different social groups. Future research using NeighViz will
include expanding options for statistical testing and visual encoding,
incorporating diverse datasets for broader social science research, and
enhancing the system’s ability to handle time-varying data.
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A APPENDIX

A.1 Data Abstraction
As neighborhood effect analysis over different social groups is a fre-
quent research concern across multiple social science problems (e.g.,
partisan segregation [6] and adoption of prosocial behavior [3]), we
abstract the data format as follows to support versatile applications
in different scenarios. Specifically, it consists of three types of data:
subgroup, census, and meta datasets.

Definition 1. (Subgroup Dataset): A subgroup is a minimal group of
individuals who share similar characteristics located in the same spatial
unit (e.g., census block group (CBG) in the US [32]). A subgroup
dataset Sd is a collection of data tables for each year’s subgroup data.
Such a dataset is designed to maintain confidentiality at an individual
level while supporting various applications. Each row r contains the
following information:

• r.population: the number of individuals in the subgroup.
• r.demographic: demographic profiles (e.g., race and age group),

usually treated as independent variables.
• r.socioeconomic: socioeconomic factors (e.g., employment sta-

tus and household income), usually treated as another type of
independent variable.

• r.behavioral: behavioral outcomes (e.g., political participation
and financial behaviors) treated as dependent variables, recording
the number of people who exhibited the behavior.

Definition 2. (Census Dataset): a census dataset Cd is a collection of
separate data tables for each year’s snapshot’s aggregated data, where
each row r represents a spatial unit. The columns describe the census
statistics (e.g., average household income and education attainment dis-
tribution) of the region and are treated as spatial independent variables
of the environment.

Definition 3. (Meta Dataset): a meta dataset Md consists of shape-
files that include the geometry, coordinates, and other spatial informa-
tion for each spatial unit in the individual and census datasets. These
shapefiles enable the integration of spatial characteristics with the demo-
graphic, socioeconomic, and behavioral data present in the individual
and census datasets.

Together, these datasets (Sd, Cd, Md) provide a comprehensive and
flexible data abstraction that allows for the exploration and analysis of
various relationships between individuals.

A.2 System Implementation
The backend module is implemented in Python. It incorporates a data
preprocessing algorithm (Fig. 1-A1), a Data Query Engine (Fig. 1-
A2), and a streamlined data analysis pipeline (Fig. 1-A3 to A7). The
data preprocessing algorithm transforms data collected from various
sources into the specific data structure outlined in Section A.1 and sub-
sequently stores them in a MySQL database. The Data Query Engine
aggregates summary statistics for subgroups based on the user-selected
demographic attributes. The data analysis pipeline consists of a se-
ries of neighborhood effect analysis algorithms utilizing the geospatial
analysis library, PySAL [24]. Each submodule within the pipeline is
encapsulated within a function, allowing for flexible interaction with
the frontend via RESTful APIs.

The frontend module (Fig. 1-B1 to B6) is composed of six coordi-
nated views. Utilizing technologies such as React.js [2], D3.js [4],
and Plotly [1], it allows for real-time data visualization and supports
interactive data analysis.

A.3 Computational Complexity
The primary computational tasks in our pipeline include Geographi-
cally Weighted Regression (GWR), regionalization, and the calculation
of spillover effects. The GWR model commences with the selection
of the optimal kernel bandwidth, followed by localized regression for
each spatial unit. This process results in a computational complexity of
O(k3n2 logn), where k is the number of independent variables and n is
the number of spatial units [21]. The regionalization process integrates
spatially constrained hierarchical clustering. The complexity of this
operation can be estimated as O(n2) for constructing a distance matrix,
and subsequently, O(n2 logn) for the hierarchical clustering process.
The analysis of local spillover effects necessitates the calculation of a
weighted sum of coefficients for each spatial unit, rendering a computa-
tional complexity of O(kn), under the assumption that each spatial unit
has an average of k neighbors. The system computes models and ren-
ders all visualization in real-time. These computationally demanding
tasks were integrated and evaluated on a computer equipped with an In-
tel Core i7 CPU and 16GB RAM. The algorithm effectively processed
computations for 1,000 spatial units, each featuring 5 independent vari-
ables, in an average time of 20 seconds. Our Python implementation
additionally leverages parallel processing capabilities to optimize the
performance of these computationally intensive operations.
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