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Pareto-Optimal Transit Route Planning with
Multi-Objective Monte-Carlo Tree Search

Di Weng, Ran Chen, Jianhui Zhang, Jie Bao, Yu Zheng, Yingcai Wu

Abstract—Planning ideal transit routes in the complex urban
environment can improve the performance and efficiency of
public transportation systems effectively. However, finding such
routes is computationally difficult due to the huge solution space
constituted by billions of possible routes. Considering the limited
scalability of exact search methods, heuristic search methods
were proposed to boost the efficiency and incorporate flexible
constraints. Nevertheless, the existing methods conceal multiple
criteria in an objective, and thus evaluating the performance
of the generated route becomes challenging due to the lack
of comparable alternatives. Inspired by the prior study, we
formulate the definition of pareto-optimal transit routes based
on multiple criteria. However, extracting these routes remains
challenging because: A) the sheer volume of possible transit
routes; and B) the sparsity of pareto-optimal routes. We address
these challenges by developing an efficient search framework:
for challenge A, a random search method is developed based
on Monte Carlo tree search where the unproductive solution
subspaces are pruned progressively to reduce the search cost;
and for challenge B, an estimation method is derived to guide the
search process by assessing the value for each solution subspace.
The superior effectiveness of our approach in approximating
the pareto-optimal transit routes was demonstrated by the
comprehensive evaluation based on the real-world data.

Index Terms—Transit Route Planning, Heuristic Search

I. INTRODUCTION

PUBLIC transit networks (e.g., buses and rapid transit
lines) are developed in many countries to alleviate the

severe traffic pressure and air pollution problems caused by
the increasing number of automobiles [1]. Most of the transit
routes in these networks, each of which comprises a series of
stations, are typically updated every 3–5 years to match the
shifting travel demand [2]. Nevertheless, finding cost-effective
transit routes remains a challenging task because 1) searching
for an optimal solution will require examining a huge solution
space that consists of massive combinations of stations; and
2) various decision factors need to be integrated into the
search process, such as the service length of transit routes,
the number of intermediate stops, and the estimated travel
demands satisfied by the proposed routes [3].

This problem is known as the classic Transit Network De-
sign Problem (TNDP) [1]. Many methods have been proposed
to facilitate the generation of transit routes. Traditional ap-
proaches [4], [5] employ optimization and exact search meth-

D. Weng, R. Chen, Y. Wu were with State Key Lab of CAD&CG, Zhejiang
University, Hangzhou, China. E-mail: {dweng, crcrcry, ycwu}@zju.edu.cn.

J. Zhang was with Hong Kong University of Science and Technology,
Hongkong, China. Email: istarzjh@gmail.com.

J. Bao, Y. Zheng were with Urban Computing Business Unit, JD Finance,
Beijing, China. Email: jiebao1985@gmail.com, msyuzheng@outlook.com.

Manuscript received April 19, 2005; revised August 26, 2015.

ods based on mathematical models, such as linear planning, to
obtain optimal transit routes under the given constraints, but
these approaches do not scale well with the number of stations
in large cities. To improve the scalability and incorporate
flexible constraints, recent approaches [6], [7] adopt heuristic
search methods (e.g., simulated annealing and genetic algo-
rithms) to find a feasible solution approximately in reasonable
time for large cities. However, although TNDP is a multi-
objective optimization problem, most of these approaches
attempt to obtain solutions with a summary objective function.
For example, Fan et al. [7] balances the user costs, the operator
costs, and the travel demands of the generated routes with
a weighted sum approach in their objective function. It is
not only challenging to find a reasonable method to combine
various objectives and adapt to new ones flexibly, but also
difficult for transportation experts to ascertain the value of the
generated routes due to the lack of comparable alternatives.

Inspired by the skyline operator [8], the idea of skyline
routes [9] was proposed to search for pareto-optimal transit
routes directly with multiple objectives. Chen et al. developed
a greedy search algorithm called probability-based spreading
(PBS), which was applied to search for possible routes be-
tween a pair of given origin and destination stations and gen-
erate a pareto-set of skyline routes. This pareto-set comprises
the routes that are not outperformed by any other route in the
same set with respect to two criteria, total service time and de-
mand satisfaction. The skyline route sets enable transportation
experts to evaluate the performance criteria of the promising
routes directly and perform informed tradeoffs among these
alternatives based on their expertise. However, limitations are
observed in the prior study where A) the definition of skyline
routes and the PBS algorithm are tailored specifically for two
aforementioned criteria, and B) the performance of the PBS
algorithm is limited to producing poor pareto fronts frequently
due to its greedy characteristic.

These limitations motivate us to extend the aforementioned
skyline route definition to include multiple criteria and propose
a refined search framework for approximating the pareto-
optimal transit routes efficiently. In particular, two major chal-
lenges were identified in the development of such framework:

Volume of transit routes. Finding a pareto-set of transit
routes is a difficult combinatorial optimization problem. In
a large city, numerous routes could be feasible between a
given pair of origin and destination stations because of the
sheer volume of potential intermediate stations. However,
the PBS algorithm simply repeats greedy stochastic search
without considering the structure of the solution space, thereby
rendering the acquisition of the optimal pareto-sets almost
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impossible. Hence, the proposed search framework must be
highly efficient in scanning and extracting feasible pareto-
optimal routes, and ideally the resulted approximation should
be gradually improved with more computational resources.

Sparsity of pareto-optimal routes. Pareto-optimal routes
are particularly difficult to find because the number of these
routes are much fewer compared to that of all feasible routes.
The PBS algorithm adopts a simple search strategy that
greedily selects the subsequent stations in a candidate route
by maximizing passenger flows, which neither generates sat-
isfactory pareto-optimal routes nor generalizes well for multi-
criteria scenarios. Without effective heuristics to narrow down
possible pareto-optimal routes, the search process may always
return an inferior pareto-set. Hence, such heuristics must be
developed and integrated in the proposed search method in
order to find the pareto-optimal routes effectively.

To address the aforementioned challenges, this study pro-
poses a novel random search method on the basis of the
Monte-Carlo tree search (MCTS) framework [10]. For the first
challenge, we propose a fast random search process to locate
pareto-optimal routes efficiently and prune the unproductive
route subspaces progressively to reduce the search cost. For
the second challenge, we introduce a new estimation method
that precomputes the average criterion gains for each search
subspace on the station graph and guides the subsequent
search process heuristically in selecting the most promising
subspaces. By tightly integrating subspace estimation with
random search, our method can extract significantly better
pareto-optimal routes more efficiently compared with the prior
method. Our contributions are summarized as follows.

• We propose a heuristic method for estimating the average
gain of each route subspace on the station graph;

• We derive a novel random search method for approximat-
ing the pareto-optimal route sets efficiently;

• We evaluate our approach on the real world data com-
pared with the state-of-the-art baseline.

II. RELATED WORK

This section summarizes the relevant studies in two aspects,
namely, transit network design and Monte-Carlo tree search.

Transit network design problem (TNDP) is one of the
most classic problem in the transportation research area. A
systematic survey on this topic has been given in [1]. In
addition, the survey of the data-driven approaches is presented
in [11]. Generally, the data-driven planning of transit networks
is achieved in two steps. First, travel demand in the plan-
ning area is determined from surveys [12], traffic data [9],
communication data [13], etc., and a number of candidate
stations are extracted from the travel demand based on various
clustering methods, such as grid-based clustering [9], DB-
SCAN [14], and CFSFDP [15]. Then, mathematical (e.g., lin-
ear programming [4], [5]) or heuristic (e.g., random search [9],
tabu search [16], genetic algorithm [7], [17], [18], simulated
annealing [19], and ant colony algorithm [12]) methods are
applied to find feasible transit routes based on the extracted
stations. Among these studies, some methods [7], [17] further
incorporate the settings of bus route frequencies. Public transit

routing [20], which attempts to find a set of pareto-optimal
travelling routes between two locations, is another problem
similar to TNDP. However, the public transit routing problem
is merely a specialized case of transit route planning, which
involves more complex criteria computed in pairwise, such
as the travel demand. In order to assist domain experts in
iteratively assessing the performance of similar routes and
determine the best one while planning a transit route, a fast
and effective approach for extracting alternative routes is
yet to be proposed. Inspired by [9], our study focuses on
generating a set of interchangeable pareto-optimal routes based
on flexible performance criteria between a given pair of origin
and destination stations.

Monte-Carlo tree search (MCTS) is a random search
framework which has demonstrated its effectiveness in various
application domains, such as games [21], [22], allocation [23],
chemistry [24], etc. By repeating four search stages, namely,
selection, expansion, simulation, and backpropagation, MCTS
can efficiently explore the huge solution space and decide an
optimal action to take at the current state. A extensive survey
of MCTS methods was conducted by Browne et al. [10].
Powley et al. [25] and Perez et al. [26] applied MCTS
to physical travelling salesman problem, planning routes for
agents in real-time to find the shortest paths. However, their
methods did not consider multi-criteria scenarios, such as
transit route planning. Furthermore, MCTS was also extended
to handle multi-objective optimization problems [27], [28],
where pareto-optimal policies were obtained with tailored
UCB functions [29]. Inspired by these prior studies, we derived
a new search method based on MCTS framework. Our method
efficiently extracts pareto-optimal transit routes with respect to
multiple performance criteria by integrating new heuristics and
adapting to the exploration of station graphs. To the best of our
knowledge, our method is the first study that applies MCTS
in the multi-criteria transit route planning scenario.

III. PROBLEM STATEMENT

This section formalizes the definition of pareto-optimal
transit routes and characterizes the route planning problem
that will be solved in this paper.

We assume that a set of feasible stations S = {s1, s2, ...},
from which stops can be selected, has been either predefined
or mined from the travel demand data [14]. Each station in
S is identified by its spatial location. Given a pair of origin
and destination stations so, sd ∈ S, we denote a transit route
between these two stations as R = (r1, r2, ..., rn) ∈ Pod,
where the first stop is the origin r1 = o, the last stop is
the destination rn = d, and sr1 , sr2 , ... ∈ S. Specifically, we
use the indices of stations in the definition of transit routes
for better presentation clarity. All feasible routes between so
and sd constitute a route space Pod. We also assume that a
set of criteria C = {c1, c2, ...} has been defined for these
routes to measure the performance of each route. For each
route Ri ∈ Pod and each performance criterion ck ∈ C, a
criterion value ck(Ri) ∈ Zck can be obtained, where Zck

contains all possible values for ck. A total order relation ≤ck

can be further defined on the set Zck for each criterion ck:
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ck(Rj) ≤ck ck(Ri) iff the route Rj is worse than (<c) or equal
to (=c) Ri w.r.t. the criterion ck. That is, Rj is dominated
by Ri w.r.t ck iff ck(Rj) <ck ck(Ri). Finally, we define the
pareto-optimal transit route set as follows.
Definition 1 (Pareto-optimal transit route set) A transit route
set P ⊆ Pod, given a pair of origin and destination stations
so, sd, is a pareto-optimal transit route set iff for every route
R ∈ P , there does not exist any other route R′ ∈ P \ {R}
that satisfies the dominance relationship: 1) ∀c ∈ C : c(R) ≤c

c(R′) and 2) ∃c ∈ C : c(R) ̸=c c(R
′).

We denote the routes in a pareto-optimal transit route set as
the pareto-optimal transit routes. Many route subsets of Pod

where each route is not dominated by any other route can be
the pareto-optimal transit route sets. The set that comprises all
these route subsets is denoted as Γod = {P1, P2, ...}, where
Pi ⊆ Pod. To compare between two pareto-optimal transit
route sets, we define a binary relation dΓ(Pi, Pj) as follows to
obtain the pareto-optimal transit route set difference between
Pi and Pj for every (Pi, Pj) ∈ Γ2

od.
Definition 2 (Pareto-optimal transit route set difference)
Given two non-empty pareto-optimal transit route sets Pi

and Pj , the unified pareto-optimal transit route set P ′ is
obtained from Pi ∪ Pj by removing the dominated routes
that conflict with Definition 1. Thereafter, the pareto-optimal
transit route set difference between Pi and Pj is defined as
dΓ(Pi, Pj) = (|Pi ∩ P ′| − |Pj ∩ P ′|)/|P ′|.

For any Pi, Pj ∈ Γod, the pareto-optimal transit route set
difference dΓ(Pi, Pj) falls in [−1, 1], where dΓ(Pi, Pj) < 0
indicates Pj is better; otherwise, Pi is better. It is not possible
to exhaustively iterate over the solution space P(Pod) (i.e., the
power set of the route space Pod) to find the optimal solution
Pm that dΓ(Pm, Pi) ≥ 0 for any route set Pi since |P(Pod)|
can be very huge. Therefore, our objective is to generate
an approximation of Pm with random search, given feasible
stations S, a pair of origin and destination stations so, sd, and
a set of performance criteria C. The idea of skyline routes
introduced in the prior study [9] is a specialized case of the
pareto-optimal transit routes with two criteria, namely, route
service time and demand satisfaction.

IV. METHODOLOGY

This section presents our approach in generating the pareto-
optimal transit route sets. First, for the sparsity challenge, we
attempt to estimate the value of each route subspace on a
prebuilt station graph to guide the subsequent search process
in finding pareto-optimal transit routes effectively. Second, for
the volume challenge, we further employ a tailored MCTS
method based on the estimated values of route subspaces to
extract pareto-optimal transit routes from the huge solution
space efficiently.

A. Building Station Graphs

Inspired by the prior study [9], we first determine the
feasibility of the routes between the stations with the station
graphs. In addition, we also propose a novel method that
estimates the average gains for choosing a route subspace,

Current station Route prefix:

Fig. 1: The estimation of the average gain in each criterion is
performed on the station graph. Blue directed edges indicate all
possible routes between the current station srk and the destination
station sd, which constitute the route subspace Pod(R

k).

which comprises a subset of candidate transit routes, based on
a classification of the given performance criteria to guide the
subsequent random search process.

1) Basic Station Graph Construction: Given the origin and
destination stations so, sd, we follow the approach outlined in
the prior study [9] to build a directed acyclic station graph
God = (S,Eod), where the nodes comprise all potential
stations in S, and each edge (si, sj) ∈ Eod indicates the
feasibility to construct a transit route that passes si and
sj consecutively. Five intuitive criteria were leveraged to
determine the feasibility of the transit line construction:

1) si must be at most δ meters away from sj ;
2) sj must be farther from the origin so and closer to the

destination sd than si along the direction of so → sd;
3) sj must be farther from the origin so than si;
4) sj must be closer to the destination sd than si;
5) si should be closer to sj than any other station before si

to avoid zigzags.
Criteria 1–4 can be easily determined during the graph con-
struction, whereas Criterion 5 needs to be tested dynamically
in the search process. In this study, we set δ = 3km and adopt
the road distances to generate the station graphs instead of the
Euclidean distances to emulate a more realistic setting. After
the graph is built, the nodes from which the destination cannot
be reached are removed from the graph.

2) Route Subspace Value Estimation: Imagine a heuristic
search process that produces a potential pareto-optimal transit
route R = (r1, r2, ..., rn) by determining each station sri
passed by route R one by one starting from the origin station
sr1 . After first k stations sr1 , sr2 , ..., srk in route R, denoted by
the route prefix Rk = (r1, r2, ..., rk), have been determined,
all remaining feasible transit routes that begin with these
k stations constitute a route subspace Pod(R

k). The formal
definition of the route subspace is presented as follows.
Definition 3 (Route subspace) Given a route prefix Rk =
(r′1, r

′
2, ..., r

′
k) of length k, the route subspace Pod(R

k) is
a subset of route space Pod, defined as Pod(R

k) = {R =
(r1, r2, ...) ∈ Pod | ∀i ∈ [1, k] : ri = r′i} ⊆ Pod.

Intuitively, a route subspace Pod(R
k) comprises all feasi-

ble transit routes that pass stations sr1 , sr2 , ..., srk and sd,
as illustrated in Figure 1. Suppose we have a route prefix
Rk = (r1, r2, ..., rk). We denote the indexes of all adjacent
stations that the k-th station srk in R is connected to as
Ek = {e1, e2, ... | (srk , sei) ∈ Eod}. To determine which
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adjacent station sei will be selected as the (k + 1)-th station
in R, we must evaluate all subsequent route subspaces derived
from route prefixes Rk+1

ei = (r1, ..., rk, ei) for every ei ∈ Ek.
To this end, we propose an estimation method that computes
the average gain in the given performance criteria of transit
routes if a subsequent route subspace is chosen (i.e., the
(k + 1)-th station is decided).

I. Classification of the performance criteria: We first
categorize the performance criteria that measure the quality
of the generated transit routes into two major types, namely,
the independent and dependent criteria.

The independent criteria (e.g., route service time, route
length, and station construction costs) are not affected by the
station selections made at the previous k−1 search steps. For
example, route service time is defined as

TR = h× (|R| − 2) +

|R|−1∑
i=1

T (sri , sri+1),

where R = (r1, r2, ...) is a transit route, h is the average
stopping time per station, and T (si, sj) indicates the estimated
travel time between the stations si and sj . By selecting sn as
the next station, route service time increases by

∆TR = h+ T (sr|R| , sn),

without involving the stations sr1 , sr2 , ..., sr|R|−1
selected at

the previous steps.
On the contrary, the computation of the dependent criteria

(e.g., demand satisfaction and route directness) relies on the
previously selected stations. For example, the demand satisfac-
tion can be inferred from the number of historical passenger
flows F (si, sj) between stations si and sj , thereby resulting
in a simplified definition

DR =

|R|−1∑
i=1

|R|∑
j=i+1

F (sri , srj ).

Hence, if sn is selected as the next station, the demand
satisfaction will increase by

∆DR =

|R|∑
i=1

F (sri , sn),

which accumulates the passenger flows from all previously
selected stations.

Without the loss of generality, we will demonstrate the com-
putation of the average gain in the respective representative
criteria of two criterion types (i.e., route service time TR for
the dependent criteria and demand satisfaction DR for the
independent criteria) if the route subspace Pod(R

k) is chosen.
II(a). Estimation of the independent criteria. The dy-

namic programming approach is employed to estimate ∆TR
(Pod(R

k)), the average gain in route service time by choosing
the route subspace Pod(R

k), based on the station graph. Since
the station graph is directed and acyclic, the station nodes in
the graph can be sorted topologically to obtain a sequence
of stations Q. Let η(si) be the mapping function that yields
the index of the station si in the sequence of stations Q.
We maintain two variables for each station si ∈ Q, namely,

the number of feasible routes that pass this station ni and
average route service time ti measured from this station to the
destination sd. By setting nd = 1, td = 0 for the destination
sd and iterating over all stations reversely from Qη(sd)−1 to
Qη(srk )

, for each station si we have:

ni =
∑

ej∈Ei

nej ,

ti =
1

ni

∑
ej∈Ei

nej [tej + T (si, sej ) + h].

Hence, we have obtained ∆TR(Pod(R
k)) = trk , which is the

average route service time of all feasible routes passing the
chosen station srk . The time complexity of this calculation is
O(|Q|), linearly w.r.t. the number of stations.

II(b). Estimation of the dependent criteria: In order
to compute ∆DR(Pod(R

k)), the average gain in demand
satisfaction by choosing the route subspace Pod(R

k), we first
compute a counting matrix N where each entry Nij indicates
how many feasible routes exist between a pair of stations
si and sj in the station graph. This matrix can be easily
generated with the dynamic programming approach similar to
the estimation of the independent criteria. Thereafter, let sv
be the station that may be possibly selected in a subsequent
search step, i.e., η(srv ) > η(srk). To calculate the number of
passenger flows F (su, sv) from a station su selected before
sv , we derive a weighted passenger flow function F ′(su, sv),
which is the multiplication of the flow F by the number of
feasible routes in the route subspace Pod(R

k) that pass su and
sv sequentially:

F ′(su, sv) =

{
NrkvNvdF (su, sv), if η(su) ≤ η(srk)
NrkuNuvNvdF (su, sv). otherwise

Therefore, by iterating over the possible intermediate station
su and averaging the passenger flows, we have

∆DR(Pod(R
k)) =

1

Nrkd

η(sd)∑
v=η(srk )

{

[
∑
u∈Rk

F ′(su, sv)]+

[

v−1∑
u=η(srk )+1

F ′(su, sv)]}.

However, evaluating this equation directly on the fly is rather
inefficient. Observing that only the enumeration of u is related
to Rk \ (rk), we can precompute ∆DR;u,rk in advance for all
(su, srk) ∈ S2. Hence, we have

∆DR(Pod(Rk)) =
∑
u∈Rk

∆DR;u,rk

In this way, the time complexity of computing the aforemen-
tioned equation is reduced to O(|Rk|) with precomputation.

III. Generalization of the estimation method: For the in-
dependent criteria, our approach naturally works well because
the computation of the gain satisfies the optimal substructure
and overlapping subproblem properties required by the dy-
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namic programming algorithm [30] given that A) the estimated
gain does not depend on the past selections of stations and B)
the station graph is a directed acyclic graph.

For the dependent criteria, our approach is tailored for the
criteria computed in pairwise. Nevertheless, for the criteria that
require triple-wise or more complex computation procedures,
the generalization of the proposed approach can be realized in
exchange of efficiency penalty. To the best of our knowledge,
however, none of such complex criteria are observed to be
extensively used in the transit route planning [1].

B. Extracting Pareto-Optimal Transit Route Set

To efficiently extract the pareto-optimal transit routes scat-
tered across the vast solution space, we integrate the proposed
estimation heuristic with a novel random search method,
Monte-Carlo route search (MCRS), derived from the MCTS
framework. In the proposed method, we extend all four stages
of MCTS to enable the proposed method to perform a highly-
effective search process on the directed acyclic station graphs.

1) Monte-Carlo Tree Search: We introduce the basic idea
of MCTS as follows. Generally, with a given state, a MCTS
process is conducted to determine which action to take. The
process comprises four consecutive stages, namely, selection,
expansion, simulation, and backpropagation stages. The search
maintains with a state tree, where the nodes represent states
and the edges indicate actions, and repeats these for stages
until states are exhausted or the time limit is reached. Initially,
the state tree only has a root node representing the given state.

First, at the selection stage, we traverse through the state
tree starting from the root node. A node is fully-expanded if
all viable actions has been explored at least once at this state,
and the number of child nodes will be equal to the number of
viable actions. If the current node is fully-expanded, a child
node will be determined to continue the traversal. The most
popular method to select a child node is UCB formula [29],
which were designed to balance between the number of times
the node is visited and the estimated value of the node (i.e.,
exploration vs. exploitation). Otherwise, we proceed to the
next stage with the current node and a randomly-selected
viable action which is yet to be explored.

Next, at the expansion stage, we randomly select a viable
action which is yet to be explored. A new node representing
the state after the selected action is taken is then inserted as
the child of the previously selected node in the selection stage.

Thereafter, at the simulation stage, we follow a default
policy, random in the most settings, to move from one state to
another, starting from the inserted one. The simulation ends
at the final state, and a reward will be obtained.

Finally, at the backpropagation stage, we trace back the
traversal path taken in the selection stage up to the root of the
state tree and update the estimated value for every node on
the path with the reward of the simulation.

By repeating these four stages for a number of iterations, we
are able to estimate the values of all viable actions at the root
node, thereby enabling an informed decision-making process
at the current state. For the state-of-the-art research on MCTS,
we refer readers to Browne et al.’s survey [10].

TABLE I: The hyperparameters used in the proposed Monte-Carlo
route search method.

Notation Description

λ The bias between the value of the route sub-
space and the number of visited times in the
ζ-UCB function

α The bias towards the route subspaces with
higher average gains

ρ The number of search steps

ψ1 The initial number of search iterations

ψmin The minimum number of search iterations

µ The decay of the number of search iterations
after each search step

τ The number of child nodes promoted after
each search step

2) Monte-Carlo Route Search: Based on the MCTS frame-
work, we develop our Monte-Carlo route search method as
follows. The hyperparameters used in the proposed method
are summarized in Table I.

I. Initialization: In MCRS, each node denoted by m(Rk) at
depth k in the state tree represents a route subspace Pod(R

k).
For each state node m(Rk

u = {r1, ..., rk}), we define the
viable actions that can be taken at the node as Am(Rk

u)
= Erk ,

where Erk = {e1, e2, ...} comprises the indexes of all adjacent
stations sei of srk . Hence, by taking an action eu ∈ Am(Rk

u)

at the state node m(Rk
u), we can obtain a new child state node

m(Rk+1
v ) where Rk+1

v = Rk
u ∪ (eu). Initially, a state tree is

built with a single root node m(R1), which represents the
root route subspace Pod(R

1) derived from the route prefix
R1 = (o) containing only the origin station. In addition,
we maintain the number of discovered pareto-optimal transit
routes ζm and the number of visited times wm for each node
m in the state tree, and a pareto-optimal transit route set Ps

that comprises the pareto-optimal transit routes discovered in
the search process.

II. Selection: Let mp be the root node m(R1) of the state
tree. If mp is fully-expanded, we attempt to select a child node
mq with the maximum ζ-UCB value, which is adapted from
the upper confidence bound (UCB) formula [29] by using the
number of discovered pareto-optimal transit routes ζmq as the
value estimation of nodes:

ζ-UCB(mq) =
ζmq

wmq

+ λ

√
ln wmp

wmq

,

where λ is a hyperparameter that balances between the nodes
with higher values or less visited times. ζ-UCB formula
provides higher flexibility than the traditional one because
the removal of pareto-optimal transit routes also affects the
value estimations of prior selection paths. The selection then
continues recursively with mp ← mq . Otherwise if mp is not
fully-expanded, we proceed to the expansion stage with mp.

III. Expansion: Let the unexplored viable actions at the
node mp(R

k
u) be A′

mp
= {e1, e2, ...}. For each action ei, we
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estimate the total average gain of the derived route subspace
Pod(R

k
u ∪ (ei)) in all criteria ci ∈ C as follows:

G(ei) =
1

|C|
∑
ci∈C

Nci(∆ci(Pod(R
k
u ∪ (ei)))).

Nci normalizes ∆ci linearly to [ϵ, 1], where ϵ = 0.05 indicates
the smallest normalized gain corresponding to the least ∆ci.
Then, we choose an action e′ ∈ A′

mp
based on the probability

of each action defined as follows:

Prob(e′) = G(e′)α/(
∑

ej∈A′
mp

G(ej)
α),

where α is a hyperparameter that controls the bias towards the
route subspaces with higher average gains. After e′ is chosen,
we insert a new node mp(R

k+1
v = Rk

u ∪ (e′)) as the child
node of mp(R

k
u) and proceed to the simulation stage.

IV. Simulation: Starting from the station se′ , we generate
a candidate route R′ by selecting the subsequent stations
srk+2

, srk+3
, ... recursively with the strategy identical to the

one used in the expansion stage until the destination station sd
is reached. Thereafter, we test whether R′ is a pareto-optimal
transit route by determining if R′ ∈ P ′

s, where the pareto-
optimal transit route set P ′

s is obtained by removing all routes
that conflict with Definition 1 from Ps ∪ {R′}.

V. Backpropagation: If R′ is a pareto-optimal transit route,
we increment ζmi

for every node mi on the path from mp

to the root node m(R1). Similarly, for the routes in Ps \ P ′
s

that are dominated by R′, we decrease ζmi for every node
mi involved in these routes. Thereafter, we repeat the search
process from the selection stage with Ps ← P ′

s.
VI. Progressive pruning: Initiating the selection process

constantly with the root node can be inefficient because pareto-
optimal transit routes may only exist in the route subspaces
that are associated with some of the descendant nodes. Hence,
after a number of iterations ψi at the i-th search step, we
choose the top-τ child nodes of the current root nodes based
on the number of discovered pareto-optimal transit routes, and
the subsequent selection processes will be commenced directly
from these child nodes instead of the root node. Furthermore,
the number of iterations will be shrinked gradually after each
search step to reduce the time costs for smaller route subspaces

ψi+1 = min(µψi, ψmin),

since we will have more confidence in these route subspaces.
The search is terminated after a given number of search steps
ρ or if the time limit is exceeded.

V. EVALUATION

This section presents the evaluation of our approach con-
ducted empirically on a real-world dataset and compared
against the state-of-the-art baseline approach. In addition, we
extensively analyzed the hyperparameter sensitivity in our
method w.r.t. those defined in Table I.

A. Baseline Approach

To the best of our knowledge, PBS algorithm [9] is the
state-of-the-art method that attempts to find pareto-optimal

transit routes based on two performance criteria. Thus, we
compared our approach with the PBS algorithm regarding the
performance of extracting pareto-optimal transit routes.

The PBS algorithm maintains a set of discovered pareto-
optimal transit routes and repeats the following procedure on
a prebuilt station graph to generate candidate routes. Initially,
the algorithm starts from the origin station and greedily selects
stations recursively. Suppose k stations have been selected
for the candidate route R′ = (r1, ..., rk), the algorithm
randomly selects the next station sei from the adjacent stations
Erk based on the probability Prob(ei) computed from the
accumulated passenger flow F ∗:

F ∗(ei) =
∑
ri∈R′

F (sri , sei),

Prob(ei) =
F ∗(ei)∑

ej∈Erk
F ∗(ej)

.

The algorithm then proceeds with R′ ← R′ ∪ (ei) and repeats
such selection until the destination station is reached. Finally,
the pareto-optimal transit route set is updated to include R′.
The algorithm can be terminated after any number of iterations
or some time flexibly.

B. Experiment Setup

In this section, we briefly describe the route performance
criteria, datasets, testing ground, and evaluation metrics used
in the comparative evaluation.

Route performance criteria. The route service time TR
(an independent criterion) and demand satisfaction DR (a
dependent criterion) are selected to measure the quality of
the generated pareto-optimal transit routes. By choosing these
two criteria, we attempted to ensure a fair comparison be-
cause the PBS algorithm was designed purely based on these
two criteria, and the algorithm deeply integrated the demand
satisfaction criterion into its greedy heuristic.

Data description. We evaluated our approach with the data
collected from the existing bus transit network in Beijing,
China. Two types of data were extracted as follows.

• Station data comprises the coordinates of 1,799 bus stops
as the potential stations in S. The distances among the
stations is computed with OSRM [31].

• Passenger flow data describes the number of trips be-
tween each pair of stations extracted from the sam-
pled check-in and check-out records of bus transit cards
occurred between Jan., 2012 and May, 2013. In total,
1,422,649 trips are obtained by combining the consecu-
tive records with the same card ID.

Testing ground. We implemented both algorithms in Go
programming language. The evaluation was conducted on a
Linux workstation with 2x 10-core Intel® Xeon® Silver 4114
CPU @ 2.20GHz and 128G memory. Tests were parallelized
with 16 concurrent threads.

Evaluation metrics. To ensure a relatively fair comparison
on the algorithm performance, we limited our approach and
the baseline to perform the same number of tests to determine
whether a candidate route is a pareto-optimal transit route,
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TABLE II: Our approach is compared against the baseline method
with two pairs of origin and destination stations, one for the small
solution space, and the other for the large space. The space size
indicates the number of feasible routes in the generated station graph.

OD Pair #1 (Small) OD Pair #2 (Large)

Origin Wangjingqiao West Bajiao Amusement Park
Destination Zhoujiazhuang Baliqiao
Distance 13.8km 35km

Space Size 4.863× 1016 3.426× 1030

instead of the execution time. We compared our approach with
the baseline w.r.t. the following metrics:

• The pareto-optimal transit route set difference between
the pareto-optimal transit route sets generated by our ap-
proach and by the baseline. The difference falls between
-1 and 1, where 1 indicates our approach produces the
pareto-optimal transit routes better than any routes found
by the baseline, while -1 indicates the otherwise.

• The execution time in seconds indicating the time spent
on finding a pareto-optimal transit route set.

C. Performance Comparison

First, we randomly selected 150 pairs of origin and desti-
nation stations and run both algorithms for 50 times to obtain
stable results. The pareto-optimal route set differences between
the results produced by our algorithm and the baseline and the
execution time of both algorithms were recorded and presented
in Fig. 2. From the results, we observed that in most cases
our algorithm significantly outperformed the baseline w.r.t. the
pareto-optimal route set difference (Fig. 2a) with much less
execution time (Fig. 2b).

To evaluate how the size of solution space affects the algo-
rithm performance, we randomly chose two pairs of origin and
destination stations as listed in the Table II, one corresponding
to the small solution space and the other corresponding the
large solution space. Then, we repeated our approach (λ =
0.005, α = 5, ρ = 10, ψ1 = 215, ψmin = 28, µ = 0.5, τ = 8)
and the baseline method for 500 times on these two pairs
to obtain a stable result. The result presented in Figure 3

−1 −0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1

dΓ

(a) Pareto-optimal route set difference

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·105Time (ms)

(b) Execution time of our algorithm and the baseline

Fig. 2: The comparative evaluation results were obtained from 150
randomly-selected pairs of origin and destination stations.
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Fig. 3: The performance comparison between our approach and
the state-of-the-art baseline. (a) The pareto-optimal transit route
difference between our results and the baseline’s results on OD #1
and #2. (b) The execution time costs of our method and the baseline
on OD #1 and #2.

indicates that our approach is highly promising: for both large
and small solution spaces, not only our approach has found
significantly better pareto-optimal transit routes compared with
the baseline (the pareto-optimal transit route set differences
are 0.93711±0.00435 for OD pair #1 and 0.96483±0.00905
for OD pair #2, as in Figure 3a), but also with much less
time (our approach converges in 9706.81ms ± 166.07 for #1
and 17986.05ms±528.42 for #2, while the baseline performs
the same number of pareto-optimal transit route tests for
17651.21ms±233.51 and 24202.94ms±594.99, respectively,
as in Figure 3b). The result also shows that our method
generates better routes for the large solution space, which is
close to the real-world settings, than the baseline. In addition,
the criterion distributions of the pareto-optimal transit routes
discovered by our approach and by the baseline on OD pair #2
in 20 runs were visualized in Figure 4, showing the dominating
advantages of our results.

D. Sensitivity Analysis

The sensitivity of the hyperparameters listed in Table I
was evaluated by studying their effects on the pareto-optimal
transit route set difference dΓ compared against the proposed
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Fig. 4: The visualization of the pareto-optimal transit routes discov-
ered by our method and by the state-of-the-art baseline on OD pair
#2 w.r.t. the route service time and demand satisfaction criteria.
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Fig. 5: The sensitivity analysis of the hyperparameters. By comparing against the proposed algorithm with the default hyperparameters, the
effects of each hyperparameter on the resulting pareto-optimal transit route set difference are extensively studied.

approach with the following default values: λ = 0.005, α =
5, ρ = 10, ψ1 = 214, ψmin = 28, µ = 0.5, τ = 8. The
evaluation was conducted on OD Pair #1, and each sample was
repeated for 500 times in an attempt to obtain stable results.
Based on the results (Figure 5), we note a few observations
as follows.

Small λ in the proposed ζ-UCT function may result in
bad results (Figure 5a) because the algorithm will be trapped
in local optima if only the number of discovered pareto-
optimal transit routes is considered during the selection stage.
In contrast, larger λ leads to the exhaustive search behavior,
thereby deteriorating the quality of the results as well. This
observation well demonstrates the effectiveness of the ζ-UCT
function in guiding the algorithm to select the most productive
nodes in the state tree.

As shown in Figure 5b, the proposed estimation heuristic
(10 ≤ α ≤ 40) generates better results than simulating
randomly (α = 0). However, for greater α, the performance of
the algorithm decreases due to the aggressive greedy strategy.

The progressive pruning technique is proven to be an
effective approach trading off between the search cost and the
algorithm performance. With larger ψ1, ψmin, and µ, the results
become incrementally better at the cost of the fast growing
search time (Figures 5d, 5e, and 5f). Moreover, increasing
the number of search steps ρ and the number of child nodes
promoted after each step τ also boosts the performance of the
algorithm to a certain extent (Figures 5c and 5g).

VI. DISCUSSION

This section discusses the implications, limitations, and
future directions of our study.

A. Implications

Our study is the first step towards the application of sophisti-
cated random search methods in the pareto-optimal planning of

multi-criteria transit routes. This problem distinguishes itself
from other multi-objective optimization problems that are solv-
able with MCTS because the complex criteria measuring the
performance of transit routes would require tailored heuristics
to be better incorporated into the random search framework.
Nevertheless, the MCTS framework remains an ideal candi-
date to solve this problem not only because of its excellent
capabilities in search performance and efficiency despite of
the huge solution space, but also the progressive nature of the
framework where the optimal solution could always be achiev-
able if sufficient computation resources were given. Therefore,
based on the MCTS framework, we developed MCRS to tackle
the route planning problem by integrating novel heuristics
into a tailored efficient search framework. The MCRS method
enables transportation experts to determine the most suitable
route by conveniently conducting comparative analysis among
multiple alternatives instead of purely relying on the traditional
optimization blackbox, which tends to produce results that are
generally difficult to customized or explained. Furthermore,
the efficiency of the MCRS method also facilitates the iterative
design procedure of transit routes, in which users may add
or remove criteria to rapidly generate different pareto-optimal
transit route sets for better decision-making. With MCRS,
informed transit route planning procedures can be established
to refine the existing transit route topologies and subsequently
improve the performance of public transit systems.

B. Limitations

We observed two limitations in our study. The first limi-
tation lies in the efficiency of MCRS. Although MCRS has
demonstrated its superior efficiency compared with the state-
of-the-art approach, tens of seconds is still required to produce
a pareto-optimal transit route set for large solution spaces.
Accelerating the proposed method to real-time will greatly
benefit many interactive analysis applications, including route
planning and public transportation system diagnosis. This can
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be achieved by parallelizing the MCRS algorithm to utilize
multiple cores or even computational clusters. We will leave
this as a part of the future work. The second limitation arises
from the performance criteria used in the evaluation. Our
method naturally supports finding pareto-optimal transit routes
based on multiple criteria since both of the hueristics and
search framework are criterion-agnostic. However, due to the
lack of baselines, we use only two criteria in the comparative
evaluation. For three or more criteria, we plan to develop an
interactive visualization system based on MCRS for analyzing
pareto-optimal transit routes similar to [32] and evaluate the
system in the field with transportation experts to unleash the
full potential of the proposed method.

C. Future Work

In the future, we plan to reimplement our method with
the parallelization and distributed computation techniques to
further improve the efficiency in generating pareto-optimal
transit routes. Moreover, deep learning models, which have
been reported to successfully aid MCTS [21], can be incor-
porated into MCRS, which may help generating the optimal
solution much more effectively. Based on MCRS, we will
further develop visual analytics systems to assist transportation
experts in better interpreting pareto-optimal transit routes.

VII. CONCLUSION

In this study, we propose a new estimation method for calcu-
lating the average gains of route subspaces based on the given
performance criteria. Furthermore, we derive a novel random
search approach based on MCTS to approximate the pareto-
optimal transit route set on the station graph efficiently with
the proposed estimation method. The extensive comparative
and sensitivity evaluation has demonstrated the effectiveness
of our approach in extracting pareto-optimal transit routes with
the considerable improvements in the efficiency and perfor-
mance over the state-of-the-art method. In the future, we would
like to extend our approach by combining visual analytic
approaches to assist transportation experts in analyzing pareto-
optimal transit routes effectively and evaluate our approach in
the field for multi-criteria scenarios.
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