
JsonCurer: Data Quality Management for JSON
Based on an Aggregated Schema

Kai Xiong , Xinyi Xu, Siwei Fu , Di Weng , Yongheng Wang , and Yingcai Wu

A2

B1

C

C1

C2

C4

B

A

A1

Experiments and Prac�ce

B3

C3

D

B2

Fig. 1: The interface of JsonCurer. (A) The Data View enables users to upload raw JSON data; (B) The Schema View presents an
aggregated schema tree rendered with summary visualizations and Bubble Sets; (C) The Data Quality Management View illustrates
the overviews and details of potential quality issues and recommends proper transformations to fix them; (D) The Cleansing History
View logs all transformations performed throughout the process of improving the quality of JSON data.

Abstract—High-quality data is critical to deriving useful and reliable information. However, real-world data often contains quality issues
undermining the value of the derived information. Most existing research on data quality management focuses on tabular data, leaving
semi-structured data under-exploited. Due to the schema-less and hierarchical features of semi-structured data, discovering and fixing
quality issues is challenging and time-consuming. To address the challenge, this paper presents JsonCurer, an interactive visualization
system to assist with data quality management in the context of JSON data. To have an overview of quality issues, we first construct
a taxonomy based on interviews with data practitioners and a review of 119 real-world JSON files. Then we highlight a schema
visualization that presents structural information, statistical features, and quality issues of JSON data. Based on a similarity-based
aggregation technique, the visualization depicts the entire JSON data with a concise tree, where summary visualizations are given
above each node, and quality issues are illustrated using Bubble Sets across nodes. We evaluate the effectiveness and usability
of JsonCurer with two case studies. One is in the domain of data analysis while the other concerns quality assurance in MongoDB
documents. The source code of JsonCurer is available under the Apache License 2.0 at https://github.com/changevis/JsonCurer.

Index Terms—Data quality, JSON, Schema aggregation, Visualization

1 INTRODUCTION

• Kai Xiong and Yingcai Wu are with the State Key Lab of CAD&CG, Zhejiang
University, Hangzhou, China. E-mail: {kaixiong, ycwu}@zju.edu.cn.

• Xinyi Xu and Di Weng are with the School of Software Technology, Zhejiang
University, Ningbo, China. E-mail: {xinyixu, dweng}@zju.edu.cn.

• Siwei Fu and Yongheng Wang are with the Zhejiang Lab, Hangzhou, China.
E-mail: fusiwei339@gmail.com, wangyh@zhejianglab.com.

• Yingcai Wu and Siwei Fu are the co-corresponding authors.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

Nowadays, with the rapid growth of data, a myriad of human activities
(e.g., data analytics and decision making) and database applications
(e.g., social media websites and customer relationship management sys-
tems) rely on it to derive useful information [62]. The meaningfulness,
reliability, and interpretability of the derived information highly depend
on the quality of the data [44]. However, data sets regularly encompass
quality issues, such as missing, inconsistent, or duplicate values, which
stem from various sources, including user entry errors, uncoordinated
data integration, and poorly applied coding standards [53], resulting in
a huge annual economic loss of millions of dollars [65]. Therefore, it
is critical to discover and fix quality issues before utilizing data.

Currently, some software applications [11, 14, 15] and research pa-
pers [21, 53] have been devoted to assisting users in assessing and
improving the quality of tabular datasets, leaving semi-structured data
under-exploited [84]. Semi-structured data, e.g., JavaScript Object

https://orcid.org/0000-0002-8203-9667
https://orcid.org/0000-0001-8329-2448
https://orcid.org/0000-0003-2712-7274
https://orcid.org/0000-0002-7675-2327
https://orcid.org/0000-0002-1119-3237
https://github.com/changevis/JsonCurer

A

[

]

Document 1 Document 2

{

"title": "The Godfather",

"genres": ["Crime", "Drama"],

"score": {"rating": 9.2 }

},

{

"title": "Othello",

"genre": ["Romance"],

"score": {"rating": "6.9"}

}

Schema-less Hierarchical

Fig. 2: An example of a MongoDB collection highlighting two quality
issues (i.e., inconsistent keys and inconsistent data types) associated
with the schema-less and hierarchical features of semi-structured data.

Notation (JSON), XML, and NoSQL database, is ubiquitous and plays
a progressively more important role with the rapid development of
the Internet [80]. Consequently, ensuring its high quality is vital in
real-world scenarios. For example, in exploratory data analysis, one
has to first solve quality issues to obtain valuable and reliable results.
Besides, in NoSQL database quality assurance, data stewards must
assess and ensure that the quality of data complies with predefined
needs or standards. Chu et al. [31] acknowledged that quality issues for
semi-structured data remain a challenge in data cleansing research.

There are two salient features that distinguish semi-structured
data from structured data. First, semi-structured data is schema-
less [22, 48, 89], as it is not restricted to a fixed or rigid schema defined
in advance, allowing keys to be added, changed, or deleted at any time.
For example, in Fig. 2, Document 1 uses the key ‘genres’ to represent
the movie genres, while Document 2 uses ‘genre’ for the same purpose.
Though flexible, this inconsistency impedes data comprehension and
transformation. Second, unlike structured data that typically represents
data in a table format, semi-structured data supports a hierarchical
structure. Identifying quality issues that reside deep within the hierar-
chy requires traversal along the hierarchy. For instance, in Fig. 2, both
documents utilize dict as the value type for the ‘score’ key. However,
after unraveling the nested structure of the two dicts, Document 1 uses
a numeric data type for the ‘rating’ value, whereas Document 2 uses
a string data type. Discovering such inconsistent data types within
nested structure is often a laborious process for users. Though the
two features allow semi-structured data to represent a broad range of
information, making it an ideal format for web services, they introduce
diverse and complex data quality issues, which can be challenging and
time-consuming for users to detect and resolve.

In this paper, we propose JsonCurer, an interactive visualization sys-
tem designed to assist with data quality management for semi-structured
data. We concretize semi-structured data into JSON, which is becom-
ing the most common semi-structured format [41]. While our primary
focus is on JSON, we believe our technique can be generalized to
other semi-structured data formats, such as XML. We follow the design
study methodology [78] to develop JsonCurer. Specifically, we first
closely collaborate with three data practitioners to formulate design
requirements, identify quality issues in JSON data, and explore possible
solutions. We also collect a corpus containing 119 JSON files with qual-
ity issues and their corresponding solutions from real world scenarios
to enrich the issue types. After that, we derive a taxonomy including
27 quality issues under two axes, i.e., data objects and data quality
dimensions. Guided by the taxonomy, we then develop an engine
to automatically detect potential issues behind data and recommend
proper transformations to fix them. Next, we propose a similarity-based
aggregation technique to summarize JSON schema and visualize it as
a node-link tree, accompanied by summary visualizations and Bub-
ble Sets to facilitate the comprehension of data and its quality issues.
Last, we implement a prototype of JsonCurer to support iterative im-
provement of data quality. To evaluate the effectiveness and usability
of JsonCurer, we design two case studies in different scenarios. The
results show that JsonCurer mitigates incorrect analysis conclusions
caused by poor quality data. Meanwhile, it assists data stewards to
remove duplicate and redundant data in MongoDB. We report insights
and reflections obtained from interviews with data practitioners.

In summary, our main contributions include: 1) a taxonomy of 27

types of quality issues for JSON data, 2) a similarity-based schema
aggregation technique for JSON and a visual design for depicting the
schema, 3) an interactive visualization system, called JsonCurer, that
helps users discover and fix quality issues efficiently and conveniently,
and 4) two case studies that demonstrate the effectiveness and usability
of JsonCurer. We also present a sub-contribution as supplementary
material, i.e., a real-world corpus containing 119 JSON files where each
is annotated with quality issues and their corresponding solutions.

2 RELATED WORK

Over the past years, a wide variety of methodologies and frameworks
[23,59,64,77,87] have been proposed to guide data quality management.
Despite their different characteristics and emphases, four essential
activities can be extracted as possible [44], i.e., data profiling, data
quality assessment, continuous quality monitoring, and data cleansing
or improvement. JsonCurer involves all the aforementioned activities.

2.1 Data Profiling
Data profiling is the process of examining and analyzing a given dataset
to determine its metadata that can help understand the dataset, such as
data types, structures, patterns, and statistics [16, 68]. It is an essential
action prior to any other activity to yield a summary view and gain
insight into data [44]. Currently, various tools [11, 12, 53, 66, 73, 91,
92] leverage data profiling. For example, in the business community,
OpenRefine [11] supports both text clustering and faceted browsing
to aid in the identification of quality issues. Besides, in the research
community, Profiler [53] integrates statistical analysis and coordinated
summary visualizations to flag problematic data. However, these tools
focus on tabular data and are not applicable to semi-structured data.

Some existing tools are able to extract and visualize the schema of
semi-structured data. JSONDISCOVERER [48] aims to facilitate the
integration and composition of JSON-based Web APIs by discovering
and visualizing the implicit schema of JSON documents. STEED [90]
is an analytical database system that learns and extracts a schema tree
for tree-structured data (such as JSON data) and provides visualizations
of the schema tree and its summary statistics. JSON Crack [6] helps
understand, explore, and analyze JSON structures by visualizing JSON
data as graphs. SCHEMADRILL [81] supports presenting a summary
schema representation that diminishes the complexity of JSON schemas
without losing meaningful information. However, these visualization
tools are not designed for quality management in JSON. For example,
they cannot locate and present issues buried in a JSON file. The idea of
JsonCurer is inspired by the above work while having different focuses.
To be specific, our system aims to facilitate the comprehension of JSON
data and the discovery of quality issues.

2.2 Data Quality Assessment and Monitoring
Data quality assessment aims to measure and estimate the quality
of data and draw conclusions from it [44, 77]. It can be carried out
from multiple dimensions, each representing a specific aspect of data
quality [43]. Despite numerous research [24, 25, 59, 62, 76, 88] on
quality dimensions, there is no consensus on a standardized set of
dimensions for data quality assessment [44, 77], since the term “data
quality” is context-dependent and frequently associated with the “fitness
for use” principle [88]. Laranjeiro et al. [58] surveyed the state-of-the-
art literature on data quality and identified frequently used dimensions,
such as accuracy, completeness, and consistency. Guided by these
characteristics, we consider six data quality dimensions and outline
a taxonomy of quality issues based on them. Further, we design and
implement the measurement and detection methods for these issues.

Data quality assessment is a cyclic process that needs to be carried
out continuously as data changes. The ongoing quality assessment
and the evaluation of quality improvements are described as quality
monitoring [42]. According to Ehrlinger et al. [42], the implementa-
tions of continuous quality monitoring in existing work fall into three
categories, i.e., 1) employing organizational control mechanisms [59],
2) constantly applying a set of test rules on data and possibly triggering
alerts if these rules are violated [50], and 3) performing periodic data
quality checks and visualizing the check results [17, 83]. JsonCurer

supports continuous quality monitoring by triggering issue detection
checks through a rule-based detection engine once data changes.

2.3 Data Cleansing
Data cleansing (aka data cleaning) deals with repairing erroneous data
or data glitches [37, 44]. To improve data quality, numerous data
cleansing techniques have been proposed so far. These techniques
cover various aspects of data cleansing, such as interfaces [11, 15, 30,
36,61,73], new abstractions [32,46,86], crowdsourcing techniques [33,
71, 82], and approaches for scalability [55, 79, 85]. In conjunction
with data cleansing, it is often mentioned that data transformations
are required to support any changes in the content, representation, or
structure of data [72]. Kandel et al. [52] investigated the challenges
and opportunities in fixing quality issues and discussed several research
directions, comprising how suitable visual encodings can help reveal
erroneous data and how interactive visualizations can promote data
cleansing and transformation. Kasica et al. [54] structured a concise
and actionable framework for multi-table transformation. However, a
preponderance of the above data cleansing and transformation work is
targeted at structured data.

Some tools are designed for cleansing or transforming JSON data.
For example, Data Chamaleon [84] is a framework to support advanced
transformations on complex semi-structured data through a Domain-
Specific Language (DSL). However, it does not support detecting qual-
ity issues in data. Besides, there is a learning curve for novices to write
code using DSL. Some commercial tools, such as JSON Formatter &
Validator [7], JSON Cleaner [34], and JSONFormatter.io [8], claim
that they help clean, debug, and beautify JSON data and are capable
of detecting and fixing errors in data. However, the errors they can
detect and fix are limited to JSON format issues, such as duplicate
keys, trailing commas, missing/incorrect quotes, etc. On the contrary,
JsonCurer supports detecting and fixing both structural and value-level
quality issues under six quality dimensions.

3 TERMINOLOGY AND BACKGROUND

3.1 Related Concepts

Document 1 JSON Schema

{

"title": Str,

"genres": [Str, Str],

"score": {"rating": Num}

}

{

"title": "The Godfather",

"genres": ["Crime", "Drama"],

"score": {"rating": 9.2}

} K-V Pair
Structure

Key Value Simple Type

Complex Type

A B

Fig. 3: We utilize Document 1 annotated with four data objects (A) and
its corresponding schema marked with two categories of data types (B)
to illustrate related concepts of JSON.

To ease the understanding the rest of the paper, we describe a set of
concepts related to JSON. 1) JSON Data Types. JSON includes six data
types where string, number, boolean, and null are simple types, and
array and dict are complex types that support nested structures. 2) JSON
Data Objects. To categorize data quality issues, we distinguish four
data objects (Fig. 3A) for JSON data according to different granularity
levels: key and value are basic objects while key-value pair (k-v pair)
and structure are composite objects. 3) Hierarchy Path, Level, and
Depth. The hierarchy path of a value in JSON data is a list of indicators
to locate it and its hierarchy level is the number of these indicators. For
example, in Fig. 3A, we can access the value 9.2 through the keys ’score’
and ’rating’. Thus, its hierarchy path is [’scores’,’rating’] and
its hierarchy level is two. Particularly, Document 1 itself is a dict value
whose hierarchy level is zero (as no indicators are needed to locate it),
and we regard it as the root of the JSON data. Further, the hierarchy
depth of a value is the maximum hierarchy level of its child values, and
the hierarchy depth of Document 1 is two. 4) JSON Schema refers to a
declarative language for annotating and validating JSON files. In this
paper, we define a plain JSON schema as the combination of structural
(i.e., how the data is structured) and type (i.e., what the data types of
the values are) properties [22] (Fig. 3B).

3.2 Requirement Analysis

Over the past year, we closely collaborated with two data analysts
and one data steward in a national research lab. Both analysts have
over five years of experience in analyzing JSON data, whereas the
data steward has been engaged in ensuring the quality of JSON data
in MongoDB for four years. Initially we attempted to make sense of
their workflow in handling JSON data. The analysts pointed out that
they usually utilize libraries (e.g., flatten_json and Pandas) in Python
or flattening tools (e.g., [4, 9]) to convert JSON data into tabular data
for analysis. However, as one analyst mentioned, “for complex JSON
data (such as data with deep hierarchy or inconsistent schema), the
(converted) result may contain lots of empty or redundant data.” He
added, “once converted, the hierarchical information of the original
JSON data would be difficult to explore.” These hinder them from
discovering and fixing quality issues, especially those related to the
structure, hidden in the original JSON data. As for the data steward,
he routinely leverages a profiling tool developed by his department to
understand data in MongoDB, and discover quality issues by check-
ing with handwritten rules. He complained that “these visualizations
(provided by the profiling tool) are not effective enough to discover a
wide range of quality issues” and “due to different data sources and
constant changes in requirements, I have to update or rewrite rules
frequently.” These pain points motivated us to design JsonCurer.

To this end, we closely followed the nested model for visualization
design and validation [67]. Specifically, we first interviewed the three
practitioners to understand: 1) what quality issues have been encoun-
tered in their daily work? 2) how do they discover these issues? and
3) what transformations can be employed to fix them? Here, we define
quality issues as those hinder data analysis or fail to meet standards or
needs. Thereafter, we iteratively extracted the requirements that guide
the system development by holding weekly discussions for nearly three
months. During the development of the prototype, the practitioners
were invited to evaluate our design from different aspects, such as intu-
itiveness and practicability. Finally, we concluded our iteration with
the following requirements.
R1: Reveal JSON schema. The prerequisite for assessing data quality

and discovering issues is understanding data. JSON schema is
a powerful instrument for grasping and validating the structure
of JSON data [40]. As the data steward noted, “Data schema
can help me quickly know what the data describe and discover its
structural issues.” Therefore, our system should support extract-
ing and portraying JSON schema.

R2: Present summaries of data. Apart from JSON schema, data
practitioners also need to have a grip on the detailed data for dis-
covering non-structural issues, such as outliers. However, direct
inspection of raw data is labor-intensive. Data practitioners expect
some summaries of data to facilitate exploring the detailed data.

R3: Detect potential quality issues. Since there may be miscella-
neous issues hidden in data, it is hard for data practitioners to
discover them comprehensively. Besides, one analyst complained,

“Sometimes deep hierarchical data really drives me crazy (when
seeking to validate data).” To ease their burden, our system should
automatically detect potential quality issues as much as possible.

R4: Depict detected issues. To assist data practitioners in gaining a
global knowledge of the data quality, our system should present
an overview of quality issues. In addition, to confirm whether
the automatically detected issues are reasonable and important,
specific information of these issues (e.g., Which part of the data is
involved in the issues? What is the proportion of the problematic
data?) should be revealed and visualized.

R5: Support manual revision. Some quality issues, such as incon-
sistent value and correlated arrays (see Sec. 4.2 for details), are
difficult to detect automatically, as they require human knowledge
to evaluate. Moreover, the results of automatic detection may not
fit the needs of data practitioners. Thus, our system should allow
data practitioners to identify, change, and discard quality issues.

R6: Recommend transformations to fix issues. To lower the barrier
of fixing issues, our system should recommend appropriate trans-
formations and allow users to configure necessary parameters for

inconsistent key redundant key missing key hierarchical keyKey

inconsistent value

inconsistent padding

inconsistent data type

duplicate value of an array

attributes with the same value
redundant padding

missing value

empty value

distribution outlier

semantic error

incorrect data type

confusing dataValue

partial duplicate k-v pairs

all duplicate k-v pairs
redundant k-v pair misplaced data

correlated arrays

data association
K-V Pair

inconsistent structure
redundant interior structure

redundant exterior structure
undesirable structureStructure

Consistency Uniqueness Conciseness Completeness Accuracy Schema-Rigor

duplicate key

Fig. 4: Our taxonomy contains 27 types of quality issues of JSON data under two axes, i.e., data objects and data quality dimensions. Some
intersections between the two axes are empty, meaning that we have not observed issues under the corresponding data objects and dimensions.
The issues marked with green, orange, and black color represent that they can be exactly, roughly, and hardly detected by rules in JsonCurer,
respectively. Detailed data features and examples for these issues and the transformations to fix them can be found in the supplementary material.

each transformation. Furthermore, data practitioners expect to
observe the results of transformation on the original data.

R7: Enable iterative data quality management. To help data practi-
tioners iteratively improve quality, our system should support con-
tinuous quality monitoring, which means that once data changes,
the system needs to update the JSON schema, re-detect quality
issues, etc. Besides, a transformation history is necessary for data
practitioners to recall or document what transformations were
utilized alongside the entire quality management process.

4 A TAXONOMY OF JSON QUALITY ISSUES

Kim et al. [56] pointed out that, due to “a lack of appreciation of
the types and extent of dirty data”, most enterprises pay inadequate
attention to data quality. Hence, to improve the quality of JSON data,
it is essential to study what quality issues may reside in data and
how to address them [62]. To this end, we construct a taxonomy
of quality issues for JSON data and summarize their corresponding
transformations in Sec. 5.4 to guide the development of JsonCurer.

4.1 Methodology
Although we have interviewed three data practitioners and obtained
valuable results, they may not be comprehensive. To enhance the
coverage of different scenarios, we collected a dataset containing real-
world JSON data with quality issues and potential solutions from vari-
ous websites, including Kaggle [10], GitHub [5], StackOverflow [13],
data.world [3], etc. We limited the data format to JSON and used
keywords such as “quality issues” and “problematic/dirty data” to seek
target data. We adopted two inclusion criteria during the collection pro-
cess. First, we focused on the scenarios of data analysis and data quality
assurance. Specifically, we picked dirty JSON data with analysis tasks
or quality requirements. Second, we selected and retained JSON data
that provides solutions for improving quality. These solutions could be
in the form of descriptive text or cleansing code. At last, we obtained a
dataset containing 119 dirty JSON files.

To identify quality issues, we first conducted a comprehensive litera-
ture review [43,44,58,62,76,88] regarding data quality dimensions and
issues. Based on the descriptions of these dimensions in the literature,
we then analyzed the issues extracted from both the interview feedback
and the JSON dataset and classified them into different quality dimen-
sions. The majority of these issues could align with well-established
quality dimensions, including consistency, uniqueness, conciseness,
completeness, and accuracy. However, we found that issues related to
JSON schema were difficult to categorize under existing dimensions.
Therefore, we introduced a new dimension, schema-rigor, to describe
these issues. Consequently, we derived a total of six data quality dimen-
sions. For implementation purposes, we further subdivided them into
different data objects they involved (as described in Sec. 3.1). Thus, we
constructed a taxonomy of quality issues based on six dimensions and
four data objects. Thereafter, we summarized the data feature for each
issue in this taxonomy. For example, the data feature of inconsistent key
issue is that there are different keys referencing the same object (such as
“genres” and “genre” in Fig. 2). Last, we combined the quality issues
with the same data feature into one issue type and created code to label

it. Eventually, we acquired a taxonomy containing 27 types of quality
issues in total (as shown in Fig. 4). We acknowledge that these issues
are not exhaustive, as there could theoretically be additional issues that
we are currently unaware of. However, they could give an impression
of the research conducted in the area of data quality management.

4.2 Data Quality Dimensions
In this subsection, we describe the six dimensions and their quality
issues in our taxonomy.

Consistency. Inconsistent key/value means there are different
keys/values in dicts of an array that represent the same entity, which is
similar to the entity resolution problem in databases [70]. Inconsistent
padding/data type means the padding format/data type of values in the
same key is inconsistent. Inconsistent structure means data with the
same structure is arranged and presented by different structures.

Uniqueness assesses whether the same data object appears multiple
times. Duplicate key means there is more than one key with the same
name in a dict. It is valid in JSON syntax while not recommended as it
causes ambiguity when accessing the key’s value. Attributes with the
same value means all keys in a dict have the same value. Partial/All
duplicate k-v pairs means the same key in partial/all dicts of an array
has the same value. We distinguish all from partial because both
of the two issues appear frequently in our collected dataset and the
transformations to fix them are diverse.

Conciseness emphasizes representing data in a concise and efficient
way, avoiding redundancy. Redundant key/k-v pair means there are
multiple semantically identical keys with fully/semantically identical
values in a dict. Redundant padding means a value has redundant
padding, such as unnecessary spaces at both ends of a string. Redundant
interior structure means a structure has redundant data objects across
hierarchy levels. Redundant exterior structure means there are different
structures in a dict/array that express the same amount of information.

Completeness. Missing key means some dicts in an array have a
specific key while the rest do not. Missing value means a value is
not recorded (i.e., null), while empty value represents a value that is
recorded but conveys nothing (such as an empty string or array).

Accuracy refers to unexpected values, formats, distributions, or
associations [76]. Distribution outlier means some values of the same
key in dicts of an array differ significantly from other values. Semantic
error means some values do not conform to semantics or conditions
(such as a negative value in age). Incorrect data type means values
should have been one data type but are incorrectly represented by
another. Misplaced data means the values of several keys in a dict are
misplaced, i.e., the value of a key should belong to another key.

Schema-rigor refers to whether the schema of data is reasonably de-
signed for accessibility, including the suitability of representation [58].
Hierarchical key means hierarchy information is embedded in the names
of keys. Those names usually have a common prefix. Confusing data
means the values of an array have different semantics, which should be
constructed to a new dict to represent the semantics clearly. Correlated
arrays means there are at least two keys in a dict whose value types are
arrays and their corresponding elements are associated semantically.
Data association means the values of keys in a dict should belong

Issue Detection

[{
 "tit le": "The Godfather",
 "genres": ["Crime", "Drama"],
 "score": {"rating": 9.2}
}, {
 "tit le": "Othello",
 "genre": ["Romance"],
 "score": {"rating": "6.9"}
}]

Raw JSON Data Schema Aggregation

Rule-Based
Detection Engine

[{
 "tit le": "The Godfather",
 "genres": ["Crime", "Drama"],
 "score": 9.2
}, {
 "tit le": "Othello",
 "genres": ["Romance"],
 "score": 6.9
}]

High-Quality JSON Data

Data Cleansing

Schema and Issue
Visualization

Potential Quality Issues

Template-Based Trans-
formation Recommender

I n

I te ra t ion

Out 1. Inconsistent Data Type

2. Inconsistent Key

3. Incorrect Data Type

4. Missing Key

5. Redundant Interior Structure

Deterministic Rules

Heuristic Rules

Intermediate JSON Data

Selected Quality Issues

Similarity-Based
Aggregation Technique

Type Inference

Similarity Calculation

Type Aggregation

Aggregated Schema
Bound with Data

[{
 "tit le": Str,
 "genres"?: [Str*],
 "genre"?: [Str],
 "score":{"rating": Num | Str }
}*]

[0, “score”, “rating”]

[1, “score”, “rating”]

9.2

"6.9"

Fig. 5: JsonCurer follows a systematic data workflow to enhance the quality of JSON data. The process begins with the input of raw JSON data,
followed by four iterative major procedures (highlighted with yellow background), and ultimately outputs cured JSON data with high quality.

to a new attribute, and the names of these keys themselves should be
regarded as the values of another attribute. The data with this schema is-
sue is not easily maintainable or understandable. Undesirable structure
means the JSON structure is not under the desired format.

5 JSONCURER WORKFLOW AND TECHNIQUES

5.1 System Workflow
We implement JsonCurer as a client-server web-based application us-
ing Flask on the server side and Vue and D3 [26] on the client side.
Figure 5 illustrates the overall workflow of JsonCurer, comprising four
key procedures, i.e., schema aggregation, issue detection, schema and
issue visualization, and data cleansing. Specifically, when raw JSON
data is input into JsonCurer, the server first extracts and generates an
aggregated schema bound with data (R1) through a similarity-based
aggregation technique (Sec. 5.2). Based on the aggregated schema, the
server then utilizes a rule-based detection engine (Sec. 5.3) to automati-
cally detect potential quality issues (R3). Next, the client-side interface
depicts the schema and detected issues via a hierarchical tree rendered
with summary visualizations and Bubble Sets (R1, R2, R4). Users can
assess the quality of JSON data by inspecting these visualizations and
adjust quality issues as needed through interactions (R5). Once users
select some issues to address, a template-based transformation recom-
mender (Sec. 5.4) will recommend appropriate transformations with
corresponding parameters for configuration (R6). After that, the server
performs the user-specified transformation and outputs intermediate
JSON data. The whole process of improving quality is iterative and
continues until satisfactory high-quality data is obtained (R7).

5.2 Similarity-Based Aggregation Technique
The plain JSON schema presented in Fig. 3B is limited in scalability, as
it is inefficient in helping grasp data and identify issues when dealing
with large amounts of JSON data. Taking the MongoDB collection
in Fig. 2 as an example, if there are hundreds or even thousands of
documents in the collection, it becomes challenging for users to inspect
the consistency of keys in each document. Therefore, it is necessary
to aggregate the common parts in the schema to assist users in com-
prehending data and discovering its quality issues more conveniently.
To this end, we propose a similarity-based aggregation technique to
overcome the scalability issue of the plain JSON schema. This tech-
nique processes raw JSON data as input, and after three steps, i.e., type
inference, similarity calculation, and type aggregation, it outputs an
aggregated schema bound with data.

5.2.1 Type Inference
To unravel the hierarchies of the input JSON data, this step drills down
into the nested structures (i.e., complex type values, namely, dicts and

arrays) and infers the data type for each simple type value, resulting in
a plain JSON schema (e.g., Fig. 3B) for subsequent aggregation.

5.2.2 Similarity Calculation

Given a plain JSON schema, this step calculates the structure similarity
within and between complex type values level by level to judge whether
these values can be aggregated. In this work, we consider two dicts (or
arrays) can be aggregated if their structures are similar. We adopt the
Jaccard index [29, 45] to compute their structure similarity:

S(vi,vj) =

∣∣StrucSet(vi)∩StrucSet(vj)
∣∣∣∣StrucSet(vi)∪StrucSet(vj)
∣∣ (1)

where vi represents a dict (or array) value and StrucSet(vi) returns the
set of its keys (or data types of its elements). Note that, 0 ≤ S ≤ 1. The
larger S indicates that the structures of the two values are more similar.
If the similarity is greater than or equal to the predefined threshold
(we initialize it to 0.5 and allow users to modify it interactively), we
aggregate these values. For instance, the structure similarity of the two
documents in the collection (Fig. 2) is 2/4 = 0.5. Thus, they can be
aggregated together.

A

{
 " d 1 " : {
 " k 1 " : [N u m] ,
 " k 2 " : N u m ,
 " k 3 " : B o o l
 } ,
 " d 2 " : {
 " k 1 " : [N u m , S t r] ,
 " k 2 " : N u m ,
 " k 4 " : S t r
 } ,
 " d 3 " : {
 " k 1 " : [S t r, N u m] ,
 " k 4 " : N u l l ,
 " k 5 " : B o o l
 } ,
 " d 4 " : {
 " k 5 " : B o o l ,
 " k 6 " : [N u m , N u m]
 } ,
 " d 5 " : {
 " k 5 " : B o o l ,
 " k 6 " : [S t r] ,
 " k 7 " : N u m
 }
}

B

0
.6

7 0
.5

0.5
0

0.25

d1

d2

d3d4

d5
0

0
.20

0.2 0

C D {
 " d 1 " + " d 2 " + " d 3 " : {
 " k 1 " : [N u m , S t r ?] ,
 " k 2 " ? : N u m ,
 " k 3 " ? : B o o l ,
 " k 4 " ? : S t r | N u l l ,
 " k 5 " ? : B o o l
 } ,
 " d 4 " + " d 5 " : {
 " k 5 " : B o o l ,
 " k 6 " : [N u m *] | [S t r] ,
 " k 7 " ? : N u m
 }
}

E

k6

k2

k3

k5

k4

k1

k5

k7

d1

d4

d4
d5

0
.6

7 0
.5

0.5

d1

d2

d3d4

d5

Fig. 6: The process of generating an aggregated schema tree. Given
a plain JSON schema (A), JsonCurer first calculates the similarity of
each two values to obtain a complete graph (B), then removes edges
less than the threshold (0.5), resulting in connected subgraphs (C), next
aggregates the values in each subgraph, yielding an aggregated JSON
schema (D), which is finally visualized as a schema tree (E).

In real-world cases, it is quite common to contain more than two
complex type values in a dict/array. Therefore, we further employ the
concept of connected components in an undirected graph to determine
which of these values can be aggregated. Taking the plain JSON schema
in Fig. 6A as an example, there are five key-value pairs in the root dict,
and all these values are of dict type. To aggregate within the root
dict, we first calculate the similarity of each two dicts, resulting in a
complete weighted graph (Fig. 6B) where each node represents a dict
and the weight of each edge denotes the similarity of its corresponding
dicts. Then, we remove edges below the threshold (0.5), and yield two
connected subgraphs (Fig. 6C), which will be aggregated separately.

5.2.3 Type Aggregation
After calculating the similarity, we leverage four rules to elaborate
on how to aggregate complex type values in different modes (i.e.,
within and between). In this work, we refer to a simple but expressive
JSON type language proposed by Baazizi et al. [22] which uses regular
expressions to describe JSON schema. However, this language does
not support the Within Dict aggregation scenario, we extend it to adapt
to our goal. The four rules are:

Between Arrays: When aggregating between multiple similar arrays,
each type in these arrays will be retained only once. If a certain type
does not appear in an array, the type will be decorated with a question
mark (?) to indicate that it can be optional. For example, the two
arrays, [Str, [Num]] and [Str, [Str]], will be merged into [Str,
[Num]?, [Str]?]. Note that though the two subarrays, [Num] and
[Str], are of array type, they are considered as two different structure
types as their similarity is 0.

Within Array: When aggregating within an array, multiple identical
types in this array will be collapsed and marked with an asterisk (*) to
represent repetition. For example, the array [[Str], [Num, Num],
[Str], Null] will be transformed into [[Str]*, [Num*], Null].

Between Dicts: When aggregating between multiple similar dicts,
each key in these dicts will be retained only once. If a certain key
does not appear in a dict, the key will be decorated with a question
mark (?) as well. Besides, the value types of each key in these dicts
will be recursively aggregated. If a key has multiple data types after
aggregation, these data types will be separated by a vertical bar (|) to
indicate that the value type has different alternatives. For example, the
last two dicts (i.e., “d4” and “d5”) in Fig. 6A can be merged into the
last dict (i.e., “d4” + “d5”) in Fig. 6D.

Within Dict: When aggregating within a dict, its child values of dict
type whose structures are similar will be fused (see Between Dicts for
aggregation). The corresponding keys of these values will be united
with a plus sign (+), denoting that the values of these keys share a
similar structure. For example, the root dict in Fig. 6A will be merged
into the aggregated dict in Fig. 6D.

In the process of type aggregation, we also gather the data values
and their hierarchy paths for each type (as shown in Fig. 5) for data
profiling and the detection and resolution of quality issues. Finally, this
step outputs an aggregated JSON schema associated with data.

5.3 Rule-Based Detection Engine
To automatically detect potential issues in JSON data (R3), we first
divide the 27 issues in our taxonomy into three classes (see Fig. 4)
based on their data features. The first class of issues (12 in total) are
deterministic. For example, to identify the inconsistent data type issue,
we can check whether values are of multiple data types. The second
class of issues (6 in total) can be roughly detected by heuristic methods.
For instance, human knowledge is needed to determine whether there
are inconsistent keys in an array of dicts. But we find that, usually,
each dict in this array has only one of these inconsistent keys and the
cumulative proportion of these keys appearing in the array is 1. Hence,
we roughly determine the keys that meet these features as inconsistent
keys. However, we cannot guarantee these rules are suitable for all
situations. The third class of issues (a total of 9) necessitate domain
knowledge for identification and cannot be detected automatically, such
as misplaced data. Then, we develop an issue detection engine that
traverses the substructures of the aggregated schema and the data bound

to each type to uncover the first two classes of issues. Finally, the engine
outputs a set of potential quality issues where each records the data and
hierarchy paths it involves.

5.4 Template-Based Transformation Recommender
To help users fix issues, we develop a template-based transformation
recommender to recommend proper transformations with parameters
for users to configure (R6). To this end, we further analyze the solutions
to the 27 quality issues obtained from the interview feedback and our
collected dataset (see Sec. 4.1) through the following three steps. First,
we abstract each solution to these issues into a transformation template.
These templates contain several parameters so that they can be applied
to other data or task requirements. Second, we examine the applicability
and generalizability of these templates. Third, we pick proper templates
by removing those that are low applicability and generalizability or
can inevitably introduce additional issues. Our final transformation
templates for each issue can be found in the supplementary material.
Note that some issues may have no template after examination and
selection. After a user has chosen one transformation and configured
its parameters, JsonCurer will transform the JSON data through the
hierarchy paths bound to the aggregated schema.

6 JSONCURER INTERFACE

The visual interface of JsonCurer encompasses four views (Fig. 1): A)
The Data View presents the raw/intermediate JSON data and highlights
data differences when performing a specific transformation (R6). B)
The Schema View displays an aggregated schema tree (R1) rendered
with summary visualizations (R2) and Bubble Sets (R4) to facilitate
comprehending data and identifying quality issues. C) The Data Quality
Management View provides the overview and details of potential issues
(R4) and recommends suitable transformations to fix them (R6). D)
The Cleansing History View chronicles all performed transformations
(R7) and supports undo operations to allow data rollback to its previous
states. Particularly, the Schema View and the Data Quality Management
View play crucial roles in helping discover and fix issues. In this section,
we describe the visual design of the two views in detail.

6.1 Schema View
After users upload or copy-paste raw JSON data in the Data View,
JsonCurer will generate an aggregated schema bound with data and
detect potential quality issues in sequence. The Schema View aims to
visualize these results in a hierarchical structure.

Schema representation. To visualize the hierarchical aggregated
schema (R1), the root of the schema, each k-v pair in a dict, and each
element in an array will be rendered as a tree node, and their hierarchies
are represented by edges. As depicted in Fig. 6E, each tree node is
rectangular and contains at least one icon representing its data type. We
identify k-v pair nodes with the key names. Besides, if the values of a
node are of multiple data types (e.g., “k4” and “k6”), type icons are
located vertically in the right of the node. And each icon can connect to
their child nodes if they are complex types (e.g., “k6”). Additionally,
we place the four operators of regular expressions (i.e., ?, *, |, and
+ mentioned in Sec. 5.2.3) on the left side of nodes to show detailed
information about the aggregated schema.

Summary visualization. JsonCurer supports data profiling to help
users understand data and discover issues (R2), especially the third
class of issues in Fig. 4 (e.g., redundant key and semantic error). To this
end, we first investigate literature [38, 51, 57, 69, 74, 94] discussing ap-
propriate chart types for visualizing different data types or tasks. With
the goal of discovering issues, we summarize some visualizations for
each data type. Details are discussed in the appendix in supplementary
material. Then, we plot the summary visualizations for the data bound
to each data type above its node (see Fig. 1B).

Issue presentation. Each quality issue involves a set of nodes in the
schema tree. Visualizing these issues (R4) is akin to the problem of
presenting node sets along a hierarchical structure. Various techniques
have been proposed for visualizing sets. Some of them rely on specific
layouts such as matrix [60], radial [19], and treemap [20], which are
not suitable for representing sets within a tree. Others can overlay set

A B

C2

C4

C5

C6

C3

C1

P0

C2

C4

C5

C6

C3

C1

P0

Fig. 7: An example of reordering nodes from A to B based on our
algorithm, which is described in detail in the supplementary material.

members on existing visual elements, making them applicable to a
tree context. However, some of these overlay techniques [18, 39, 63]
are line-based, which may cause confusion when lines intersect with
the links in the tree and reduce readability due to line crossings. In
contrast, region-based overlay techniques [28, 35, 47] surround set
elements with smooth contours, which can clearly express set relations
while maintaining the readability of the tree structure. Among them,
we selected an open-source implementation of Bubble Sets [35] to
visualize issues in JsonCurer. As depicted in Fig. 7, each bubble
represents a potential issue, and its background color is encoded to a
quality dimension. Besides, it encloses at least one node indicating
that the issue involves the data in these nodes. We notice that nodes in
some bubbles may be too far apart, causing the intersection of bubbles
and separation of focuses (see Fig. 7A). To alleviate this problem, we
employ a node reordering algorithm that aims to minimize the vertical
distance between the nodes of each bubble (see Fig. 7B).

A B

Num

DictArray

Str

Fig. 8: Design alternatives for visualizing the aggregated schema (A)
and the detected quality issues (B) in a hierarchical tree.

Design alternatives. As a hierarchical structure, JSON data is typ-
ically represented using node-link trees [48, 90]. Based on the tree
representation, we have explored different encoding strategies during
the iterative development process of JsonCurer. One candidate for
schema representation (Fig. 8A) adopts a vertical hierarchy layout with
nodes arranged horizontally, utilizing colors to encode the data types
of nodes. However, this node arrangement layout does not align effec-
tively with the original arrangement of JSON data. Moreover, color
encoding for data types is less intuitive compared to using icons with
semantic meaning. Fig. 8B shows an alternative method that employs a
heatmap to convey the severity of quality issues within the tree. While
this method effectively communicates the extent of issues associated
with individual nodes, it fails to express the set relations of issues in-
volving multiple nodes. Additionally, it lacks the ability to reveal which
quality dimension each issue falls under.

Interactions. Users can pan, zoom, fold, and unfold the schema tree
and inspect the summary visualizations to understand the JSON data.
After a user clicks a summary visualization, the Data View will locate
and highlight the corresponding portion (Fig. 1A1). A user can select
some nodes in the schema tree and right-click them to identify a new
quality issue (Fig. 1B2) so that JsonCurer can recommend transforma-
tions to fix it. Besides, in the upper right corner of the Schema View, a
user can modify the dict and array similarity thresholds to reaggregate
the JSON schema and click the switch button to toggle the display of
summary visualizations above nodes.

6.2 Data Quality Management View

The Data Quality Management View includes four panels to help users
inspect and fix issues. Specifically, to present an overview of quality
issues (R4), the issue overview panel (Fig. 1C1) utilizes a pie chart and
a stacked bar chart to visualize the frequency distributions of issues
across different quality dimensions and data objects, i.e., the two axes
of our taxonomy, respectively. The potential issue list panel (Fig. 1C2)
exhibits all detected issues grouped by issue type and identified based
on their position within the schema tree. This identification enables
users to pinpoint where each issue manifests in the data. Users can
click one issue to inspect its detailed information (R4) in the details
panel (Fig. 1C3), which uses a pie chart to display the proportion of
problematic data, followed by summary visualizations to help users
determine whether the issue needs to be fixed. After inspection, users
can disregard less critical issues or false positives by moving them to
the Dismissed list (R5). Users can also select some issues to fix in the
data cleansing panel (Fig. 1C4), which presents recommended trans-
formations with parameters for users to configure (R6). The Preview
button is used to examine the impact of a configured transformation on
data (R6), as shown in Fig. 1A2. After examination, users can click the
Confirm button to transform the JSON data, and the operation will be
logged in the Cleansing History View (R7).

Interactions. Users can click the legend in the issue overview panel
to select specific quality dimensions for investigation. Issues that are
not under these dimensions will be removed from the potential issue
list panel, and their corresponding bubbles in the schema tree will
also disappear. Besides, clicking a bubble will display the details of
the corresponding issue in the details panel. Similarly, clicking an
issue in the potential issue list will navigate its involving nodes of the
corresponding bubble.

7 EVALUATION

To evaluate the effectiveness and usability of JsonCurer, we conducted
two case studies with five data practitioners (P1-P5), where P1-P3 are
data analysts and P4-P5 are data stewards. P1, P2, and P4 are the three
practitioners we collaborated with in our requirement analysis (Sec. 3.2).
P3 and P5 have an average of 3 years of experience in dealing with
quality issues of JSON data and are interested in using JsonCurer to
improve data quality. The two case studies demonstrate that JsonCurer
is applicable to different scales of JSON data under two scenarios, i.e.,
reliable data analysis and quality assurance in MongoDB.

7.1 Data and Procedure

We prepared two JSON files for evaluation, each corresponding to one
case study. The JSON file for case 1 was derived from real under-
graduate information (e.g., ‘birthdate’, ‘club’, etc.) obtained from a
college class. To reveal the capability of JsonCurer in discovering and
fixing issues, we carefully reconstructed it to increase the diversity of
issues. This file has a size of 0.16 MB, containing 52 student records
with a hierarchy depth of 5, and consists of 20 nodes in the aggregated
schema. For case 2, we used an excerpt of a MongoDB dataset [1],
including raw bitcoin tweets that contain numerous duplicate and re-
dundant data that required cleansing. The file has a size of 6.73 MB,
containing 1000 tweet records with a hierarchy depth of 10, and con-
sists of 514 nodes in the aggregated schema. The case studies were
conducted in a think-aloud protocol, and we took notes about their
thoughts and comments for further analysis. Each study began with a
training session (17 minutes on average) to ensure that the practitioners
were familiar with our system. Thereafter, participants freely utilized
JsonCurer to improve the quality of the JSON file (15 minutes). Finally,
we conducted a semi-structured interview to collect their feedback (18
minutes). Overall, each study took approximately 50 minutes.

7.2 Improving Data Quality for Reliable Analysis

This case demonstrates how JsonCurer helps analysts improve the qual-
ity of a small-scale JSON file for reliable analysis. In this case study,
the analysts (P1-P3) were asked to independently explore whether the

A

D

E

C

B

Fig. 9: System interface of the second case. Data stewards aim to keep data unique and concise (D). Issues under the two dimensions are listed in
(E). (A) presents a diff view of employing a batch transformation to delete duplicate keys. (B) and (C) are two examples of redundant data.

age of students and the number of clubs they participate in would af-
fect their course scores. To obtain reliable results, they needed to first
discover and fix quality issues in the data that might hinder the analysis.

After uploading the JSON file into JsonCurer, the analysts sought to
have a forest view of the data. By glancing at the schema tree (Fig. 1B),
they noticed that each student’s information was structured as a dict
with 7 child nodes. Then, the analysts aimed to identify the target nodes
related to the analysis task, obtaining three groups of nodes, i.e., (‘club’)
for the number of clubs, (‘birth_year’, ‘birth_month’, ‘birth_day’) for
the age, and (‘scores’, ‘secScore’) for the course scores. All these
nodes were enclosed in bubbles, indicating potential quality issues. To
identify whether these issues would affect the analysis results, they next
clicked each bubble to scrutinize the details of the issue.

For the 1st group, two issues were detected in the ‘club’, i.e., empty
value and inconsistent data type. Specifically, the analysts found the
‘club’ values were of three kinds: an array of strings, an empty array,
and a string (Fig. 1B1). The value of ‘club’ being an empty array is
reasonable when a student did not participate in any clubs. Thus, they
dismissed the empty value issue. To verify the inconsistent data type
issue, they reviewed the summary visualizations above the ‘club’ node
and clicked them to locate data in the Data View (Fig. 1A1), finding that
if students only participated in one club, its value was the club name
itself. To fix this issue, they configured parameters of a recommended
transformation that splits a string into an array in the data cleansing
panel. After previewing the transformation result (Fig. 1A2), they
clicked the Confirm button to employ the transformation.

For the 2nd group, a hierarchical key issue was detected on the three
nodes. To calculate the student’s age, the analysts intended to merge
these nodes into a single string so that it could be converted to a date.
After inspecting the detailed information of the issue (Fig. 1C3), they
discovered that there was a ‘birth_month’ whose string length was 2
while the others were 3. From the category frequency bar chart of the
‘birth_month’ node, they found that some string was shown as ‘Fe’,
which might be an incorrect abbreviation for February. To generate the
birthdate correctly, they selected and right-clicked the ‘birth_month’
node and manually identified a new issue, i.e., inconsistent value, to the
node (Fig. 1B2). Thereafter, they fixed the issue by replacing ‘Fe’ with
‘Feb’. At last, they created a new node ‘birthdate’ by concatenating the
three ‘birth’ nodes to fix the hierarchical key issue.

For the 3rd group, the analysts found that the ‘secScore’ node in-
volved a missing key issue and the child node of ‘scores’ involved
a missing value issue. From the tree structure, they noticed that the

two nodes were the keys of several major courses (marked with +),
which were aggregated together by JsonCurer. To figure out which ma-
jor courses were missing ‘secScore’, they increased the dict similarity
threshold to 1. After regenerating the schema, they found the two issues
stemmed from the major course ‘Experiments and Practice’ (Fig. 1B3).
Therefore, they deleted the course to fix the two issues. Finally, the
analysts exported the cured data for the downstream analysis task.

7.3 Deduplicating MongoDB Data for Quality Assurance

In this case, the stewards (P4-P5) were required to eliminate duplicate
and redundant content in the second JSON file as much as possible.
The deduplication task is a common requirement for data stewards to
maintain data quality in databases. This case demonstrates how data
stewards can improve their efficiency in deduplicating large-scale data
in MongoDB with the aid of JsonCurer.

After uploading the tweet JSON file, JsonCurer completed the load-
ing process in 15 seconds, during which it successfully detected a total
of 346 quality issues. To deduplicate data, the stewards kept the issues
under the uniqueness and conciseness dimensions by deselecting the
other dimensions in the issue overview (Fig. 9D), resulting in 54 issues
remaining, which fell into six issue types where four were duplicate
and two were redundancy, as shown in Fig. 9E.

The stewards first focused on the four types of duplicate issues. They
observed that there were ten keys whose values were all the same (all
duplicate k-v pair) and four keys with partially duplicate values (partial
duplicate k-v pair). After inspecting their corresponding summary
visualizations, the stewards presumed that the values of the ten keys
(such as null and 0) did not provide valuable information. Thus, they
selected all the ten issues and employed a batch transformation to delete
these keys simultaneously (Fig. 9A). As for the four partial duplicate
k-v pair issues, they believed that these issues were reasonable and
discarded them together. Thereafter, the stewards checked and fixed
the remaining duplicate issues using the same way described above.

Then the stewards moved to the two types of redundancy issues.
They found there were several redundant interior structures. An exam-
ple was shown in Fig. 9B, the key ‘_id’ had only one child key ‘$oid’
and the two keys represented the same meaning. However, such ‘re-
dundant’ structure was reasonable as it was automatically generated by
MongoDB to ensure the uniqueness of each document in the collection.
Hence, the stewards decided to ignore it and flatten the other redundant
nested structures. Next, they reviewed the redundant padding issues
and found some values of these keys had extra whitespace at the end.

To fix these issues, the stewards also employed a batch transformation
(i.e., trim) to remove the whitespace.

After that, all the 54 detected issues had been scanned. The stewards
continued to explore the aggregated schema and discovered redundant
contents that JsonCurer did not detect (see Fig. 9C). The values of the
four keys denoted the same content, which could be reduced to a single
one. And P4 added that how to reduce them depended on the specific
business requirements.

7.4 Feedback and Suggestions
All practitioners were deeply impressed by our system and spoke highly
of our proposed design, including the aggregated schema visualization
and automatic issue detection. As P2 commented, “it’s a useful and
intuitive tool that I have never seen before.” P5 appreciated the usability
of JsonCurer, “it can help me quickly discover and remove numerous
duplicate and redundant data.” P3 and P4 mentioned that although
JsonCurer was somewhat complex (due to the need to understand
various issues), once they were familiar with it, it was more efficient
than checking and fixing issues by manually writing code. In addition,
they also put forward constructive suggestions for improvement.

Schema design: (1) If there were a plethora of nodes in the schema
tree, practitioners needed to repeatedly pan and zoom the tree to view
the data structure or locate specific nodes of interest. To alleviate the
issue, P4 suggested that the Schema View could be equipped with a
minimap for the schema tree, while P5 expected to be able to navigate
a node by entering its hierarchy path. (2) P1 noted that setting a proper
similarity value can be difficult, and the new similarity threshold may
affect the aggregation results of the other subtrees. Thus, it is not user-
friendly to control the aggregation of multiple subtrees by adjusting the
similarity. He recommended that users could directly split and merge
nodes through interactions such as clicking and dragging. (3) P3 hoped
to directly manipulate the nodes and their visualizations in the Schema
View to interactively perform data transformations, such as deleting
redundant nodes, rearranging inconsistent structures, etc.

Issue detection and resolution: (1) Most practitioners suggested that
JsonCurer should support detecting user-defined issues (e.g., verifying
integrity constraints) and employing basic transformations (e.g., delete,
rearrange, and flatten) to apply to customized requirements. (2) P5
was confused about which issues to fix first. He suggested assigning
a priority for each issue type, with higher priority indicating that the
issue was critical and required to fix first. (3) When a new JSON data
is generated or a previous one is updated with new entities, it would
be tedious to repeatedly improve the quality of the new data with the
same cleansing strategies. Thus, both P2 and P4 hoped that JsonCurer
could record the data transformation operation as a script, and execute
the script to solve the issues for new data.

8 DISCUSSION

Evaluation: The taxonomy of quality issues we constructed has not
been systematically assessed. Thus, it is unclear whether the 27 issues
can cover the majority of issues that users may encounter, whether the
issue detection rules are reasonable, and to what extent our system can
help improve users’ work efficiency. In the future, we plan to conduct
more comprehensive studies with a broader user population. Moreover,
to evaluate the efficiency and scalability of JsonCurer in larger datasets,
we plan to provide a benchmark on how the performance of JsonCurer
gets affected as a function of the data size and the hierarchical depth.

Lessons Learned: We provide two design lessons learned during the
development of JsonCurer. First, the feedback from case studies shows
that data practitioners were satisfied with the intuitiveness of our visual
design. However, we notice that if multiple bubbles with different
dimensions intersect, the color of the overlapping area will change,
causing the loss of dimension information. Based on the suggestions
we received, we plan to use the color opacity of bubble to encode
the priority of its corresponding issues. The higher the priority of the
issue, the darker the color of the bubble will be. This could guide
users to fix quality issues in priority order more intuitively. Second, the
use of schema aggregation in JsonCurer has proven to be effective in
improving users’ understanding of semi-structured data. By organizing

data into structured and hierarchically grouped components, users can
efficiently manage data quality across the four activities mentioned in
Sec. 2. However, due to the schema-less feature of semi-structured
data, the similarity-based aggregation technique we employed may lead
to inaccurate aggregations. For instance, data groups with different
semantic meanings but similar structures might be incorrectly merged,
hindering effective data quality management. To address this issue,
we plan to explore the use of large language models to improve the
accuracy of schema aggregation.

Generalizability: Though JsonCurer focuses on data quality manage-
ment for JSON data, we believe that our approach is generalizable to
other semi-structured data formats, such as XML and YAML, as they
can be converted to each other by numerous tools [2, 34]. However,
during the conversion process between these formats, one potential
issue that may arise is data loss or corruption [27,75], such as data type
mismatch and namespace loss when converting from XML to JSON.
To mitigate the risk of data loss, data mapping and normalization tech-
niques need to be considered to ensure all relevant data is preserved
throughout the conversion process.

9 CONCLUSION

In this work, we present JsonCurer, an interactive visualization system
for improving the quality of JSON data. JsonCurer can automatically
detect quality issues and recommend proper transformations to fix them.
To guide the detection and recommendation, we construct a taxonomy
of issues based on interviews with data practitioners and a review
of our collected dataset. We propose a similarity-based technique to
aggregate JSON schema and visualize it as a tree to display structural
information. In this tree, summary visualizations are given above each
node to present statistical features, and Bubble Sets across nodes are
used to illustrate quality issues. Two case studies show that JsonCurer
is effective and helpful in improving data quality. In future work, we
aspire to enhance its scalability and usability, and explore its potential
opportunity and research direction, as described below.

Scalability: Our case studies show that JsonCurer is capable of
handling data with up to 500 nodes. However, the studies reveal two
scalability issues. First, P4 and P5 reported difficulties in navigating
nodes of interest within large-scale trees. To alleviate the issue, we plan
to create a minimap for the schema tree and support nodes searching
by hierarchy paths. Second, as our detection engine is rule-based and
customized for quality issues, extending it to a large variety of issues is
time-consuming. In future iterations, we intend to optimize JsonCurer
by supporting user-defined issues to enhance its usability. In addition,
we also plan to allow for more customization from the user side, such
as providing configuration or template files that can be shared.

Opportunity: An exciting opportunity for JsonCurer is to improve
the quality of JSON datasets used for training machine learning mod-
els. High-quality datasets are essential for effective machine learning.
Though there have been efforts to enhance the quality of models, little
attention has been paid to improving the data quality [49]. We anticipate
that JsonCurer can fill this gap by facilitating the discovery and resolu-
tion of quality issues (e.g., imbalanced classes and missing/inconsistent
labels [93]) in JSON datasets. By utilizing our work, machine learning
practitioners and researchers could achieve better model performance.

Research Direction: The transformations provided by JsonCurer are
designed for fixing quality issues. However, data practitioners often
seek general-purpose transformations to complete specific tasks. For
example, in data integration, practitioners usually perform filter and join
operations. However, current prototype of JsonCurer does not support
these transformations. Therefore, a potential research direction is to
explore what kind of transformations could be utilized by practitioners
to wrangle semi-structured data and how to design visualizations and
interactions to facilitate the wrangling process.

ACKNOWLEDGMENTS

The work was supported by NSFC (U22A2032), National Key R&D
Program of China (2022YFE0137800), and Key “Pioneer” R&D
Projects of Zhejiang Province (2023C01120). We gratefully thank
the anonymous reviewers for their valuable comments.

REFERENCES

[1] 2022 January Bitcoin Tweets. https://www.kaggle.com/datasets/
kodamacodes/2022-january-bitcoin-tweets. Accessed: Jul 2023.
7

[2] Convert JSON to other Formats and Vice-Versa. https://www.conver
tjson.com/. Accessed: Feb 2023. 9

[3] data.world. https://data.world/. Accessed: Feb 2023. 4
[4] Flatten Complex Nested JSON. https://www.coderstool.com/fla
tten-json. Accessed: Feb 2023. 3

[5] GitHub. https://github.com/. Accessed: Feb 2023. 4
[6] JSON Crack - Crack your data into pieces. https://jsoncrack.com/.

Accessed: Feb 2023. 2
[7] JSON Formatter & Validator. https://jsonformatter.curiouscon
cept.com/. Accessed: Feb 2023. 3

[8] JSON Formatter, Validator, Viewer, Editor & Beautifier Online. https:
//www.jsonformatter.io/. Accessed: Feb 2023. 3

[9] JSON To CSV Converter. https://www.convertcsv.com/json-t
o-csv.htm. Accessed: Feb 2023. 3

[10] Kaggle. https://www.kaggle.com/. Accessed: Feb 2023. 4
[11] OpenRefine. https://openrefine.org. Accessed: Feb 2023. 1, 2, 3
[12] Oracle Enterprise Data Quality. https://www.oracle.com/hk/mi

ddleware/technologies/enterprise-data-quality.html.
Accessed: Feb 2023. 2

[13] Stackoverflow. https://stackoverflow.com. Accessed: Feb 2023. 4
[14] Tableau Prep Builder. https://www.tableau.com/products/prep.

Accessed: Feb 2023. 1
[15] Trifacta. https://www.trifacta.com/. Accessed: Feb 2023. 1, 3
[16] Z. Abedjan, L. Golab, F. Naumann, and T. Papenbrock. Data Profiling.

Synthesis Lectures on Data Management, 10(4):1–154, 2018. 2
[17] O. Akbulut, L. McLaughlin, T. Xin, M. Forshaw, and N. S. Holliman. Vi-

sualizing ordered bivariate data on node-link diagrams. Visual Informatics,
7(3):22–36, 2023. doi: 10.1016/j.visinf.2023.06.003 2

[18] B. Alper, N. Riche, G. Ramos, and M. Czerwinski. Design Study of
LineSets, a Novel Set Visualization Technique. IEEE TVCG, 17(12):2259–
2267, 2011. doi: 10.1109/TVCG.2011.186 7

[19] B. Alsallakh, W. Aigner, S. Miksch, and H. Hauser. Radial Sets: Interactive
Visual Analysis of Large Overlapping Sets. IEEE TVCG, 19(12):2496–
2505, 2013. doi: 10.1109/TVCG.2013.184 6

[20] B. Alsallakh and L. Ren. PowerSet: A Comprehensive Visualization of
Set Intersections. IEEE TVCG, 23(1):361–370, 2016. doi: 10.1109/TVCG
.2016.2598496 6

[21] C. Arbesser, F. Spechtenhauser, T. Mühlbacher, and H. Piringer. Visplause:
Visual Data Quality Assessment of Many Time Series Using Plausibility
Checks. IEEE TVCG, 23(1):641–650, 2017. doi: 10.1109/tvcg.2016.
2598592 1

[22] M.-A. Baazizi, H. B. Lahmar, D. Colazzo, G. Ghelli, and C. Sartiani.
Schema Inference for Massive JSON Datasets. In Proc. of Extending
Database Technology, 2017. doi: 10.5441/002/edbt.2017.21 2, 3, 6

[23] C. Batini, F. Cabitza, C. Cappiello, and C. Francalanci. A Comprehensive
Data Quality Methodology for Web and Structured Data. International
Journal of Innovative Computing and Applications, 1(3):205–218, 2008.
doi: 10.1109/icdim.2007.369236 2

[24] C. Batini and M. Scannapieca. Data Quality: Concepts, Methodologies
and Techniques. Cham: Springer International Publishing, 2016. doi: 10.
1007/3-540-33173-5 2

[25] J. M. Borovina Josko and J. E. Ferreira. Visualization properties for Data
Quality Visual Assessment: An exploratory Case Study. Information
Visualization, 16(2):93–112, 2017. doi: 10.1177/1473871616629516 2

[26] M. Bostock, V. Ogievetsky, and J. Heer. D3 Data-Driven Documents.
IEEE TVCG, 17(12):2301–2309, 2011. doi: 10.1109/TVCG.2011.185 5

[27] J. Boyer, S. Gao, S. Malaika, M. Maximilien, R. Salz, and J. Simeon.
Experiences with JSON and XML Transformations. In W3C Workshop on
Data and Services Integration, 2011. 9

[28] H. Byelas and A. Telea. Visualization of Areas of Interest in Software
Architecture Diagrams. In Proc. of the ACM symposium on Software
visualization, pp. 105–114, 2006. 7

[29] S. Cai, S.-H. Hong, X. Xia, T. Liu, and W. Huang. A machine learning
approach for predicting human shortest path task performance. Visual
Informatics, 6(2):50–61, 2022. doi: 10.1016/j.visinf.2022.04.001 5

[30] R. Chen, D. Weng, Y. Huang, X. Shu, J. Zhou, G. Sun, and Y. Wu.
Rigel: Transforming Tabular Data by Declarative Mapping. IEEE TVCG,
29(1):128–138, 2023. doi: 10.1109/TVCG.2022.3209385 3

[31] X. Chu, I. F. Ilyas, S. Krishnan, and J. Wang. Data Cleaning: Overview
and Emerging Challenges. In Proc. of ACM SIGMOD, pp. 2201–2206,
2016. doi: 10.1145/2882903.2912574 2

[32] X. Chu, I. F. Ilyas, and P. Papotti. Holistic Data Cleaning: Putting Viola-
tions Into Context. In Proc. of the IEEE International Conference on Data
Engineering, pp. 458–469, 2013. doi: 10.1109/icde.2013.6544847 3

[33] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and Y. Ye.
KATARA: A Data Cleaning System Powered by Knowledge Bases and
Crowdsourcing. In Proc. of ACM SIGMOD, pp. 1247–1261, 2015. doi:
10.1145/2723372.2749431 3

[34] Code Beautify. JSON Cleaner Online to clean Messy JSON online. https:
//codebeautify.org/json-cleaner/. Accessed: Feb 2023. 3, 9

[35] C. Collins, G. Penn, and S. Carpendale. Bubble Sets: Revealing Set
Relations with Isocontours over Existing Visualizations. IEEE TVCG,
15(6):1009–1016, 2009. doi: 10.1109/TVCG.2009.122 7

[36] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. F. Ilyas, M. Ouz-
zani, and N. Tang. NADEEF: A Commodity Data Cleaning System.
In Proc. of ACM SIGMOD, pp. 541–552, 2013. doi: 10.1145/2463676.
2465327 3

[37] T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning,
vol. 479. John Wiley & Sons, 2003. 3

[38] Z. Deng, D. Weng, S. Liu, Y. Tian, M. Xu, and Y. Wu. A survey of urban
visual analytics: Advances and future directions. Computational Visual
Media, 9(1):3–39, 2023. doi: 10.1007/s41095-022-0275-7 6

[39] K. Dinkla, M. J. Van Kreveld, B. Speckmann, and M. A. Westenberg.
Kelp Diagrams: Point Set Membership Visualization. Computer Graphics
Forum, 31(3):875–884, 2012. doi: 10.1111/j.1467-8659.2012.03080.x 7

[40] M. Droettboom et al. Understanding JSON Schema. https://json-s
chema.org/understanding-json-schema/UnderstandingJSONS
chema.pdf. Accessed: Feb 2023. 3

[41] D. Durner, V. Leis, and T. Neumann. JSON Tiles: Fast Analytics on Semi-
Structured Data. In Proc. of the International Conference on Management
of Data, pp. 445–458, 2021. doi: 10.1145/3448016.3452809 2

[42] L. Ehrlinger and W. Wöß. Automated Data Quality Monitoring. In Proc. of
the MIT International Conference on Information Quality, pp. 15.1–15.9,
2017. 2

[43] L. Ehrlinger and W. Wöß. A Novel Data Quality Metric for Minimality.
In Proc. of Data Quality and Trust in Big Data, pp. 1–15, 2019. doi: 10.
1007/978-3-030-19143-6_1 2, 4

[44] L. Ehrlinger and W. Wöß. A Survey of Data Quality Measurement and
Monitoring Tools. Frontiers in Big Data, 5:1–30, 2022. doi: 10.3389/fdata
.2022.850611 1, 2, 3, 4

[45] S. Fletcher, M. Z. Islam, et al. Comparing sets of patterns with the Jaccard
index. Australasian Journal of Information Systems, 22:1–17, 2018. 5

[46] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The LLUNATIC Data-
Cleaning Framework. Proc. of the VLDB Endowment, 6(9):625–636, 2013.
doi: 10.14778/2536360.2536363 3

[47] J. Heer and D. Boyd. Vizster: Visualizing online social networks. In
IEEE Symposium on Information Visualization, pp. 32–39, 2005. doi: 10.
1109/INFVIS.2005.1532126 7

[48] J. L. C. Izquierdo and J. Cabot. JSONDiscoverer: Visualizing the schema
lurking behind JSON documents. Knowledge-Based Systems, 103:52–55,
2016. doi: 10.1016/j.knosys.2016.03.020 2, 7

[49] A. Jain, H. Patel, L. Nagalapatti, N. Gupta, S. Mehta, S. Guttula, S. Mu-
jumdar, S. Afzal, R. Sharma Mittal, and V. Munigala. Overview and
Importance of Data Quality for Machine Learning Tasks. In Proc. of ACM
SIGKDD, pp. 3561–3562, 2020. doi: 10.1145/3394486.3406477 9

[50] S. Judah, M. Selvage, and A. Jain. Magic Quadrant for Data Quality
Tools. https://www.gartner.com/en/documents/3522717, 2016.
Accessed: Jan 2023. 2

[51] K. Kagkelidis, I. Dimitriadis, and A. Vakali. Lumina: an adaptive, auto-
mated and extensible prototype for exploring, enriching and visualizing
data. Journal of Visualization, 24:631–655, 2021. doi: 10.1007/s12650
-020-00718-y 6

[52] S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. Van Ham, N. H. Riche,
C. Weaver, B. Lee, D. Brodbeck, and P. Buono. Research Directions
in Data Wrangling: Visualizations and Transformations for Usable and
Credible Data. Information Visualization, 10(4):271–288, 2011. doi: 10.
1177/1473871611415994 3

[53] S. Kandel, R. Parikh, A. Paepcke, J. M. Hellerstein, and J. Heer. Profiler:
Integrated Statistical Analysis and Visualization for Data Quality Assess-
ment. In Proc. of the International Working Conference on Advanced
Visual Interfaces, pp. 547–554, 2012. doi: 10.1145/2254556.2254659 1, 2

https://www.kaggle.com/datasets/kodamacodes/2022-january-bitcoin-tweets
https://www.kaggle.com/datasets/kodamacodes/2022-january-bitcoin-tweets
https://www.convertjson.com/
https://www.convertjson.com/
https://data.world/
https://www.coderstool.com/flatten-json
https://www.coderstool.com/flatten-json
https://github.com/
https://jsoncrack.com/
https://jsonformatter.curiousconcept.com/
https://jsonformatter.curiousconcept.com/
https://www.jsonformatter.io/
https://www.jsonformatter.io/
https://www.convertcsv.com/json-to-csv.htm
https://www.convertcsv.com/json-to-csv.htm
https://www.kaggle.com/
https://openrefine.org
https://www.oracle.com/hk/middleware/technologies/enterprise-data-quality.html
https://www.oracle.com/hk/middleware/technologies/enterprise-data-quality.html
https://stackoverflow.com
https://www.tableau.com/products/prep
https://www.trifacta.com/
https://doi.org/10.1016/j.visinf.2023.06.003
https://doi.org/10.1109/TVCG.2011.186
https://doi.org/10.1109/TVCG.2013.184
https://doi.org/10.1109/TVCG.2016.2598496
https://doi.org/10.1109/TVCG.2016.2598496
https://doi.org/10.1109/tvcg.2016.2598592
https://doi.org/10.1109/tvcg.2016.2598592
https://doi.org/10.5441/002/edbt.2017.21
https://doi.org/10.1109/icdim.2007.369236
https://doi.org/10.1007/3-540-33173-5
https://doi.org/10.1007/3-540-33173-5
https://doi.org/10.1177/1473871616629516
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1016/j.visinf.2022.04.001
https://doi.org/10.1109/TVCG.2022.3209385
https://doi.org/10.1145/2882903.2912574
https://doi.org/10.1109/icde.2013.6544847
https://doi.org/10.1145/2723372.2749431
https://doi.org/10.1145/2723372.2749431
https://codebeautify.org/json-cleaner/
https://codebeautify.org/json-cleaner/
https://doi.org/10.1109/TVCG.2009.122
https://doi.org/10.1145/2463676.2465327
https://doi.org/10.1145/2463676.2465327
https://doi.org/10.1007/s41095-022-0275-7
https://doi.org/10.1111/j.1467-8659.2012.03080.x
https://json-schema.org/understanding-json-schema/UnderstandingJSONSchema.pdf
https://json-schema.org/understanding-json-schema/UnderstandingJSONSchema.pdf
https://json-schema.org/understanding-json-schema/UnderstandingJSONSchema.pdf
https://doi.org/10.1145/3448016.3452809
https://doi.org/10.1007/978-3-030-19143-6_1
https://doi.org/10.1007/978-3-030-19143-6_1
https://doi.org/10.3389/fdata.2022.850611
https://doi.org/10.3389/fdata.2022.850611
https://doi.org/10.14778/2536360.2536363
https://doi.org/10.1109/INFVIS.2005.1532126
https://doi.org/10.1109/INFVIS.2005.1532126
https://doi.org/10.1016/j.knosys.2016.03.020
https://doi.org/10.1145/3394486.3406477
https://www.gartner.com/en/documents/3522717
https://doi.org/10.1007/s12650-020-00718-y
https://doi.org/10.1007/s12650-020-00718-y
https://doi.org/10.1177/1473871611415994
https://doi.org/10.1177/1473871611415994
https://doi.org/10.1145/2254556.2254659

[54] S. Kasica, C. Berret, and T. Munzner. Table Scraps: An Actionable
Framework for Multi-Table Data Wrangling From An Artifact Study of
Computational Journalism. IEEE TVCG, 27(2):957–966, 2021. doi: 10.
1109/TVCG.2020.3030462 3

[55] Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani, P. Papotti, J.-A.
Quiané-Ruiz, N. Tang, and S. Yin. BigDansing: A System for Big Data
Cleansing. In Proc. of ACM SIGMOD, pp. 1215–1230, 2015. doi: 10.
1145/2723372.2747646 3

[56] W. Kim. On Three Major Holes in Data Warehousing Today. Journal of
Object Technology, 1(4):39–47, 2002. doi: 10.5381/jot.2002.1.4.c3 4

[57] X. Kui, N. Liu, Q. Liu, J. Liu, X. Zeng, and C. Zhang. A survey of visual
analytics techniques for online education. Visual Informatics, 6(4):67–77,
2022. doi: 10.1016/j.visinf.2022.07.004 6

[58] N. Laranjeiro, S. N. Soydemir, and J. Bernardino. A Survey on Data
Quality: Classifying Poor Data. In Proc. of the IEEE Pacific Rim Interna-
tional Symposium on Dependable Computing, pp. 179–188, 2015. doi: 10.
1109/PRDC.2015.41 2, 4

[59] Y. W. Lee, D. M. Strong, B. K. Kahn, and R. Y. Wang. AIMQ: A Method-
ology for Information Quality Assessment. Information & Management,
40(2):133–146, 2002. doi: 10.1016/s0378-7206(02)00043-5 2

[60] A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister. UpSet:
Visualization of Intersecting Sets. IEEE TVCG, 20(12):1983–1992, 2014.
doi: 10.1109/TVCG.2014.2346248 6

[61] G. Li, R. Li, Z. Wang, H. C. Liu, M. Lu, and G. Wang. HiTailor: Interactive
Transformation and Visualization for Hierarchical Tabular Data. IEEE
TVCG, 29(1):139–148, 2023. doi: 10.1109/TVCG.2022.3209354 3

[62] L. Li, T. Peng, and J. Kennedy. A Rule Based Taxonomy of Dirty Data.
GSTF International Journal on Computing, 1(2):140–148, 2011. 1, 2, 4

[63] W. Meulemans, N. H. Riche, B. Speckmann, B. Alper, and T. Dwyer. Kelp-
Fusion: A Hybrid Set Visualization Technique. IEEE TVCG, 19(11):1846–
1858, 2013. doi: 10.1109/TVCG.2013.76 7

[64] N. Micic, D. Neagu, F. Campean, and E. H. Zadeh. Towards a Data Quality
Framework for Heterogeneous Data. In Proc. of the IEEE International
Conference on Internet of Things and IEEE Green Computing and Com-
munications and IEEE Cyber, Physical and Social Computing and IEEE
Smart Data, pp. 155–162, 2017. doi: 10.5220/0005557001890194 2

[65] S. Moore. How to Create a Business Case for Data Quality Improvement.
https://www.gartner.com/smarterwithgartner/how-to-creat
e-a-business-case-for-data-quality-improvement. Accessed:
Jan 2023. 1

[66] O. Moseler, L. Kreber, and S. Diehl. The ThreadRadar visualization for
debugging concurrent Java programs. Journal of Visualization, 25(6):1267–
1289, 2022. doi: 10.1007/s12650-022-00843-w 2

[67] T. Munzner. A Nested Model for Visualization Design and Validation.
IEEE TVCG, 15(6):921–928, 2009. doi: 10.1109/TVCG.2009.111 3

[68] F. Naumann. Data Profiling Revisited. ACM SIGMOD Record, 42(4):40–
49, 2014. doi: 10.1145/2590989.2590995 2

[69] J. Oetting. Data Visualization 101: How to Choose the Right Chart or
Graph for Your Data. https://library.cup.edu.cn/upload_file
s/article/14_20191204084012.pdf, 2019. 6

[70] G. Papadakis, D. Skoutas, E. Thanos, and T. Palpanas. Blocking and
Filtering Techniques for Entity Resolution: A Survey. ACM Computing
Surveys, 53(2):1–42, 2020. doi: 10.1145/3377455 4

[71] H. Park and J. Widom. CrowdFill: Collecting Structured Data from the
Crowd. In Proc. of ACM SIGMOD, pp. 577–588, 2014. doi: 10.1145/
2588555.2610503 3

[72] E. Rahm and H. H. Do. Data Cleaning: Problems and Current Approaches.
IEEE Database Engineering Bulletin, 23(4):3–13, 2000. 3

[73] V. Raman and J. M. Hellerstein. Potter’s Wheel: An Interactive Data
Cleaning System. In Proc. of the International Conference on Very Large
Data Bases, pp. 381–390, 2001. 2, 3

[74] B. Saket, A. Endert, and Ç. Demiralp. Task-Based Effectiveness of Basic
Visualizations. IEEE TVCG, 25(7):2505–2512, 2018. doi: 10.1109/TVCG
.2018.2829750 6

[75] B. Šandrih, D. Tošić, and V. Filipović. Towards Efficient and Unified
XML/JSON Conversion-A New Conversion. IPSI BgD Transactions on
Internet Research (TIR) vol, 13, 2017. 9

[76] C. O. Schmidt, S. Struckmann, C. Enzenbach, A. Reineke, J. Stausberg,
S. Damerow, M. Huebner, B. Schmidt, W. Sauerbrei, and A. Richter. Fa-
cilitating harmonized data quality assessments. A data quality framework
for observational health research data collections with software implemen-
tations in R. BMC Medical Research Methodology, 21(1):1–15, 2021. doi:
10.1186/s12874-021-01252-7 2, 4

[77] L. Sebastian-Coleman. Measuring Data Quality for Ongoing Improvement:
A Data Quality Assessment Framework. Newnes, 2012. 2

[78] M. Sedlmair, M. Meyer, and T. Munzner. Design Study Methodology:
Reflections from the Trenches and the Stacks. IEEE TVCG, 18(12):2431–
2440, 2012. doi: 10.1109/TVCG.2012.213 2

[79] G. Simões, H. Galhardas, and L. Gravano. When Speed Has a Price:
Fast Information Extraction Using Approximate Algorithms. Proc. of
the VLDB Endowment, 6(13):1462–1473, 2013. doi: 10.14778/2536258.
2536259 3

[80] D. Skoutas and A. Simitsis. Ontology-Based Conceptual Design of ETL
Processes for Both Structured and Semi-Structured Data. International
Journal on Semantic Web and Information Systems, 3(4):1–24, 2007. doi:
10.4018/jswis.2007100101 2

[81] W. Spoth, T. Xie, O. Kennedy, Y. Yang, B. Hammerschmidt, Z. H. Liu, and
D. Gawlick. SchemaDrill: Interactive Semi-Structured Schema Design.
In Proc. of the Workshop on Human-In-the-Loop Data Analytics, pp. 1–7,
2018. doi: 10.1145/3209900.3209908 2

[82] Y. Tong, C. C. Cao, C. J. Zhang, Y. Li, and L. Chen. CrowdCleaner:
Data Cleaning for Multi-version Data on the Web via Crowdsourcing.
In Proc. of the IEEE International Conference on Data Engineering, pp.
1182–1185, 2014. doi: 10.1109/icde.2014.6816736 3

[83] L. Tuura, A. Meyer, I. Segoni, and G. Della Ricca. CMS Data Quality
Monitoring: Systems and Experiences. Journal of Physics: Conference
Series, 219(7), 2010. doi: 10.1088/1742-6596/219/7/072020 2

[84] Á. Valencia Parra, Á. J. Varela Vaca, M. T. Gómez López, and P. Ceravolo.
CHAMALEON: Framework to improve Data Wrangling with Complex
Data. In Proc. of the International Conference on Information Systems,
pp. 1–17, 2019. 1, 3

[85] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and T. Milo.
A Sample-and-Clean Framework for Fast and Accurate Query Processing
on Dirty Data. In Proc. of ACM SIGMOD, pp. 469–480, 2014. doi: 10.
1145/2588555.2610505 3

[86] J. Wang and N. Tang. Towards Dependable Data Repairing with Fixing
Rules. In Proc. of ACM SIGMOD, pp. 457–468, 2014. doi: 10.1145/
2588555.2610494 3

[87] R. Y. Wang. A Product Perspective on Total Data Quality Management.
Communications of the ACM, 41(2):58–65, 1998. doi: 10.1145/269012.
269022 2

[88] R. Y. Wang and D. M. Strong. Beyond Accuracy: What Data Quality
Means to Data Consumers. Journal of Management Information Systems,
12(4):5–33, 1996. doi: 10.1145/3368089.3417045 2, 4

[89] Y. Wang, Z. Zhu, L. Wang, G. Sun, and R. Liang. Visualization and
visual analysis of multimedia data in manufacturing: A survey. Visual
Informatics, 6(4):12–21, 2022. doi: 10.1016/j.visinf.2022.09.001 2

[90] Z. Wang, D. Zhou, and S. Chen. STEED: An Analytical Database System
for TrEE-structured Data. Proc. of the VLDB Endowment, 10(12):1897–
1900, 2017. doi: 10.14778/3137765.3137803 2, 7

[91] K. Xiong, S. Fu, G. Ding, Z. Luo, R. Yu, W. Chen, H. Bao, and Y. Wu.
Visualizing the Scripts of Data Wrangling With SOMNUS. IEEE TVCG,
29(6):2950–2964, 2023. doi: 10.1109/TVCG.2022.3144975 2

[92] K. Xiong, Z. Luo, S. Fu, Y. Wang, M. Xu, and Y. Wu. Revealing the
Semantics of Data Wrangling Scripts With COMANTICS. IEEE TVCG,
29(1):117–127, 2023. doi: 10.1109/TVCG.2022.3209470 2

[93] W. Yang, M. Liu, Z. Wang, and S. Liu. Foundation Models Meet Visu-
alizations: Challenges and Opportunities. Computational Visual Media,
2024. https://arxiv.org/abs/2310.05771. 9

[94] S. Zhu, G. Sun, Q. Jiang, M. Zha, and R. Liang. A Survey on Automatic
Infographics and Visualization Recommendations. Visual Informatics,
4(3):24–40, 2020. doi: 10.1016/j.visinf.2020.07.002 6

https://doi.org/10.1109/TVCG.2020.3030462
https://doi.org/10.1109/TVCG.2020.3030462
https://doi.org/10.1145/2723372.2747646
https://doi.org/10.1145/2723372.2747646
https://doi.org/10.5381/jot.2002.1.4.c3
https://doi.org/10.1016/j.visinf.2022.07.004
https://doi.org/10.1109/PRDC.2015.41
https://doi.org/10.1109/PRDC.2015.41
https://doi.org/10.1016/s0378-7206(02)00043-5
https://doi.org/10.1109/TVCG.2014.2346248
https://doi.org/10.1109/TVCG.2022.3209354
https://doi.org/10.1109/TVCG.2013.76
https://doi.org/10.5220/0005557001890194
https://www.gartner.com/smarterwithgartner/how-to-create-a-business-case-for-data-quality-improvement
https://www.gartner.com/smarterwithgartner/how-to-create-a-business-case-for-data-quality-improvement
https://doi.org/10.1007/s12650-022-00843-w
https://doi.org/10.1109/TVCG.2009.111
https://doi.org/10.1145/2590989.2590995
https://library.cup.edu.cn/upload_files/article/14_20191204084012.pdf
https://library.cup.edu.cn/upload_files/article/14_20191204084012.pdf
https://doi.org/10.1145/3377455
https://doi.org/10.1145/2588555.2610503
https://doi.org/10.1145/2588555.2610503
https://doi.org/10.1109/TVCG.2018.2829750
https://doi.org/10.1109/TVCG.2018.2829750
https://doi.org/10.1186/s12874-021-01252-7
https://doi.org/10.1186/s12874-021-01252-7
https://doi.org/10.1109/TVCG.2012.213
https://doi.org/10.14778/2536258.2536259
https://doi.org/10.14778/2536258.2536259
https://doi.org/10.4018/jswis.2007100101
https://doi.org/10.4018/jswis.2007100101
https://doi.org/10.1145/3209900.3209908
https://doi.org/10.1109/icde.2014.6816736
https://doi.org/10.1088/1742-6596/219/7/072020
https://doi.org/10.1145/2588555.2610505
https://doi.org/10.1145/2588555.2610505
https://doi.org/10.1145/2588555.2610494
https://doi.org/10.1145/2588555.2610494
https://doi.org/10.1145/269012.269022
https://doi.org/10.1145/269012.269022
https://doi.org/10.1145/3368089.3417045
https://doi.org/10.1016/j.visinf.2022.09.001
https://doi.org/10.14778/3137765.3137803
https://doi.org/10.1109/TVCG.2022.3144975
https://doi.org/10.1109/TVCG.2022.3209470
https://arxiv.org/abs/2310.05771
https://doi.org/10.1016/j.visinf.2020.07.002

	Introduction
	Related Work
	Data Profiling
	Data Quality Assessment and Monitoring
	Data Cleansing

	Terminology and Background
	Related Concepts
	Requirement Analysis

	A Taxonomy of JSON Quality Issues
	Methodology
	Data Quality Dimensions

	JsonCurer Workflow and Techniques
	System Workflow
	Similarity-Based Aggregation Technique
	Type Inference
	Similarity Calculation
	Type Aggregation

	Rule-Based Detection Engine
	Template-Based Transformation Recommender

	JsonCurer Interface
	Schema View
	Data Quality Management View

	Evaluation
	Data and Procedure
	Improving Data Quality for Reliable Analysis
	Deduplicating MongoDB Data for Quality Assurance
	Feedback and Suggestions

	Discussion
	Conclusion

