
Ferry: Toward Better Understanding of
Input/Output Space for Data Wrangling Scripts

Zhongsu Luo , Kai Xiong , Jiajun Zhu , Ran Chen , Xinhuan Shu , Di Weng , and Yingcai Wu

A B C
A1

A3

A2

B1

B2

Constraint Tag

Icon Content Conflict
Character

Date

Logical

Asc

NUll

Type Missing Duplicate Order Conflict
D E

Fig. 1: The interface of Ferry. (A) Script View displays the associations of data columns involved in the transformation (A1) and the
uploaded data wrangling scripts (A2); (B) Constraint View displays the input/output space with sample data to clarify the space; (C)
Detail View presents constraint details to aid in understanding the table space and allows users to manipulate the constraint.

Abstract—Understanding the input and output of data wrangling scripts is crucial for various tasks like debugging code and onboarding
new data. However, existing research on script understanding primarily focuses on revealing the process of data transformations,
lacking the ability to analyze the potential scope, i.e., the space of script inputs and outputs. Meanwhile, constructing input/output
space during script analysis is challenging, as the wrangling scripts could be semantically complex and diverse, and the association
between different data objects is intricate. To facilitate data workers in understanding the input and output space of wrangling scripts, we
summarize ten types of constraints to express table space and build a mapping between data transformations and these constraints to
guide the construction of the input/output for individual transformations. Then, we propose a constraint generation model for integrating
table constraints across multiple transformations. Based on the model, we develop Ferry, an interactive system that extracts and
visualizes the data constraints describing the input and output space of data wrangling scripts, thereby enabling users to grasp the
high-level semantics of complex scripts and locate the origins of faulty data transformations. Besides, Ferry provides example input and
output data to assist users in interpreting the extracted constraints and checking and resolving the conflicts between these constraints
and any uploaded dataset. Ferry’s effectiveness and usability are evaluated through two usage scenarios and two case studies,
including understanding, debugging, and checking both single and multiple scripts, with and without executable data. Furthermore, an
illustrative application is presented to demonstrate Ferry’s flexibility.

Index Terms—Data wrangling, Visual analytics, Constraints, Program understanding

1 INTRODUCTION

• Z. Luo, K. Xiong, J. Zhu, R. Chen and Y. Wu are with the State Key Lab of
CAD&CG, Zhejiang University, Hangzhou, China. E-mail: {zhongsuluo,
kaixiong, jiajunzhuchris, chenran928, ycwu}@zju.edu.cn.

• X. Shu is with School of Computing, Newcastle University, Newcastle Upon
Tyne, United Kingdom. E-mail: xinhuan.shu@newcastle.ac.uk

• D. Weng is with the School of Software Technology, Zhejiang University,
Ningbo, China. E-mail: dweng@zju.edu.cn. D. Weng is the corresponding
author.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

Data wrangling is a crucial process that makes data consumable for
downstream applications [29]. It involves an assortment of data trans-
formations [53], such as filtering and sorting, which can be performed
by writing wrangling scripts using programming languages and their
transformation libraries (e.g., R and tidyverse [66]).

Numerous scenarios require data workers to understand and make
appropriate changes to existing data wrangling scripts, such as debug-
ging scripts issues and reusing scripts for new datasets [67]. Prior
studies [51, 67, 68] primarily focus on revealing the transformation
processes conducted by these scripts from the data perspective, i.e.,
how tables change over the course of transformations. However, the
importance of understanding the input and output space of these scripts,
i.e., what input data can be accepted by the scripts and what output

https://orcid.org/0009-0003-0885-2742
https://orcid.org/0000-0002-8203-9667
https://orcid.org/0009-0002-1438-0561
https://orcid.org/0000-0002-2770-4070
https://orcid.org/0000-0002-9736-4454
https://orcid.org/0000-0003-2712-7274
https://orcid.org/0000-0002-1119-3237

data will be produced accordingly, is largely overlooked by current
approaches. Such understanding significantly enhances efficiency and
effectiveness in a wide range of scripts editing scenarios. For instance,
to reuse a script written years ago or by others for a new data format,
data workers need to ascertain whether the input data space of the script
can accommodate the new format and whether the output data space
generated on the new data will align with the transformation goals.

In addition, the current approaches for scripts understanding often
rely solely on the limited datasets supplied by users. The lack of a
holistic understanding of the input and output data scopes may fail
to uncover latent errors within the data transformation processes. For
example, issues such as unexpected missing values in the transforma-
tion output may only manifest when a column’s values in the input
data exceed a specific threshold – a scenario that may not be covered
in the sample data provided by users. This can lead to an incomplete
understanding of how the scripts handle edge cases or atypical data,
potentially resulting in unforeseen complications during broader appli-
cations. Furthermore, the existing approaches may prove inadequate
when users aim to analyze scripts in the absence of data, such as scripts
obtained from online sources, or when attempting to repurpose scripts
for new datasets where direct execution encounters runtime errors.

Inspired by the widespread use of constraints in prior work [2, 8,
38, 39] to restrict tables by imposing requirements, we leverage con-
straints to express the inputs and outputs of data wrangling scripts,
and propose an interactive visualization system that automatically con-
structs input/output space with constraints to alleviate the limitations
of the aforementioned scripts understanding approaches. However,
developing such a system poses two primary challenges:
Extraction of Table Constraints. Constructing input/output table
space for scripts without data requires static analysis of transformation
code on tables. However, the diversity and complexity of the trans-
formation types and their implementation approaches [68] make their
constraints on tables non-trivial to determine and extract. Moreover, as
data wrangling scripts often contain multiple steps of transformations,
it is challenging to integrate constraints inferred from these transforma-
tions into a single table, involving inheritance and iterative updating of
constraints throughout the data wrangling process.
Presentation of Table Space. As constraints are abstract and lack the
concreteness of real data, existing data profiling tools are unable to
reveal their characteristics, making them less intuitive to understand.
Additionally, multiple constraints construct table space, and expressing
the overall effects of these constraints on tables is challenging.

In this work, we collaborated closely with four experts to iteratively
formulate design requirements for supporting a holistic understanding
of the input and output space for scripts. Based on these require-
ments, we develop an interactive visual analysis system, called Ferry,
to address the two challenges. For the first challenge, we summarize
ten types of constraints to express the input/output space and build
a mapping that illustrates the effects of diverse data transformations
on these constraints. Both the ten constraint types and the mapping
are summarized based on data wrangling knowledge from previous
work [21, 31, 64, 68] and validated on a real-world data wrangling code
dataset [68]. Additionally, we propose a rule-based constraint gener-
ation model that constructs the input/output space through iterative
forward/backward inference and propagation of constraints. For the
second challenge, we design different visualizations for explaining
individual constraints and utilize sample data to assist in understanding
the overall effects of constraints on the table. With Ferry’s assistance,
users can understand the script input and output by inspecting table
constraints and sample data. Ferry enables users to upload their own
data to determine whether the script can handle it and customize output
table constraints based on the requirements of downstream tasks. In
addition, Ferry supports identifying the causes and locations of conflicts
between constraints and data to assist users in modifying the script.

To evaluate Ferry’s effectiveness and usability, we introduced two
usage scenarios that demonstrate improvements in user efficiency: on-
boarding new data into existing scripts and fixing issues; and debugging
scripts without executable data. Next, we conducted two case studies
with four experienced data practitioners in different tasks and collected

their feedback and suggestions on Ferry. Finally, we integrated Ferry
into an existing scripts understanding system to showcase its flexibility.

In summary, the contributions of this paper are as follows:
• We summarize ten types of table constraints for exhibiting the

table space and establish a mapping between transformations and
these constraints to represent data wrangling knowledge.

• We propose a constraint generation model capable of inferring
the input/output space for data wrangling scripts.

• We develop Ferry, an interactive system designed to enhance the
efficiency of data workers in tasks requiring a comprehensive
understanding of the input and output of data wrangling scripts.

2 RELATED WORK

2.1 Data Wrangling
Data wrangling is a tedious and error-prone task that can consume up to
80% of a data worker’s time and effort [6, 30]. Data workers often use
programming languages and their libraries to complete data wrangling
tasks, such as pandas [49] in Python and tidyverse [66] in R.

However, the use of scripting languages for data wrangling tasks
presents two significant challenges for data workers. For those with lim-
ited programming skills, script writing can be inefficient. In response,
some works focus on enhancing data wrangling efficiency. Moreover,
understanding data wrangling scripts, essential for script reuse and
debugging, remains a significant challenge. Consequently, other works
focus on assisting users in understanding scripts.

Enhancing efficiency. On the one hand, some approaches seek
to lower the barrier to data wrangling through interactive methods.
Commercial systems, such as Microsoft Excel [14], OpenRefine [47],
Trifacta [64], and Tableau Prep Builder [60], enable users to select data
operators on their menus. Wrangler [21, 30] recommends and executes
appropriate data transformations based on user interactions. Some
tools help users synthesize transformation code using programming by
example [12, 28]. Rigel [5] introduces a declarative mapping approach
that accomplishes data transformation by allowing users to drag data
attributes. Some works support data transformation for various types of
data, such as graph [4, 23, 25, 36, 40, 63], website [1, 27, 34, 35, 42] and
semi-structured [26, 37, 69] data. On the other hand, some approaches
enable data wrangling tasks for users through automation methods or
natural language. Sutton et al. [59] implemented a tool capable of au-
tomating data transformation by comparing differences between data ta-
bles. Auto-Pipeline [71] introduces a "by-target" paradigm for pipeline
synthesis to achieve automatic data transformation. Data Formula-
tor [65] employs an AI agent to automate the transformation of input
data into the format required for visualization. NL2Rigel [26] achieves
declarative data transformation through natural language. However,
these works are more concerned with how to accomplish data wrangling
tasks and do not aid users in understanding scripts or its input/output.

Understanding scripts. Some existing tools employ interactive
methods to aid users in debugging and understanding scripts. Un-
ravel [56] is a debugging tool that supports the pipe script structure
of the R language, enabling users to explore and understand the code.
Some tools exist as plugins to integrate with users’ workflows. For in-
stance, WrangleDoc [70] is a JupyterLab plugin that employs program
synthesis techniques to generate summaries of output tables, assisting
users in identifying errors within scripts. TweakIt [32] is a Microsoft
Excel plugin that helps users understand and explore the effect of code
on data. Another category of tools concentrates on depicting the se-
mantics of data wrangling scripts through visualization techniques.
SOMNUS [67] has designed a set of glyphs that reveal data trans-
formations and employs node-link diagrams to illustrate the changes
occurring in data tables within scripts, thereby revealing the semantics
of the scripts. Datamations [51] employs animations to demonstrate
the changes in data. COMANTICS [68] has designed a pipeline that
detects changes in data tables and infers the data transformation type in
scripts using a CNN model. These works focus on demonstrating data
transformation effects without revealing the script’s input/output space
and rely on executable data. Consequently, we designed Ferry, a tool
that can display a script’s input/output space by analyzing the semantic
information of data wrangling within the script.

2.2 Constraints-based Methods
Constraints are widely utilized in various domains, such as software en-
gineering [15,33,50], visualization [43,52,58,72] and databases [7,39],
to restrict the possible values for a variable, which can represent
partial information about the variable [3]. In a constraint program,
unknowns such as variables are expressed through a series of con-
straints, and the solutions must satisfy all the restrictions of these
constraints [43]. Constraint programming standardizes knowledge
representation, enabling users to model expertise as high-level ex-
pressions. Many prior works have employed constraint programming
across various domains. Data wrangling knowledge can be represented
through the depiction of changes in tabular data. Currently, there are
tools available for repairing data structures [9, 13, 38], testing spread-
sheets [2, 24], testing databases [7, 39], and some commonly used
constraint solvers [8, 16, 17, 41], all of which can represent tabular
data through constraints. However, they are designed to allow users to
specify constraints to represent knowledge rather than to automatically
extract constraints. Some tools extract technical constraints from code
through #IFDEF variability [33, 45, 54, 62]. ExtractFix [15] extracts
information from scripts and infers the constraints necessary for their
correct execution, using constraints to fix vulnerabilities in the program.
However, they are incapable of extracting data wrangling knowledge
from scripts. To fill this gap, we summarized ten types of table con-
straints and established a mapping between the constraints and data
transformation types to represent data wrangling knowledge.

Existing work on explaining constraints typically focuses on con-
straint solving process [73]. Common methods include search-tree
based visualization [11,20,57], visualization of variables [10], and visu-
alization of constraints propagation [18, 19]. Some works focus on the
visualization of the constraints themselves, employing methods such as
ring and tree visualizations [22], as well as network diagrams [48, 61],
to display pertinent details of the constraints. These works are not
suited for presenting constraints that describe table characteristics and
the table space. To address this deficiency, we capture constraints
through constraint tags and represent table space using sample data,
thereby aiding users in understanding constraints and table space.

3 TABLE CONSTRAINTS

A script’s input/output space describes the possible sets of input/output
tables that the script can handle/generate. It declares which specific
columns the table contains and what data characteristics (e.g., value
range, data format) these columns should/could possess. Prior research
has widely used constraints to effectively capture the scope of these
tables, which impose requirements defining necessary data characteris-
tics in terms of schema, format, values, and other aspects. Therefore,
we utilize constraints to express the input/output space. In this section,
we summarize ten types of table constraints applicable to the data wran-
gling domain and establish a mapping to guide the construction of the
input/output space for data transformations using these constraints.

3.1 Methodology
Numerous studies on data constraints [2,8,38,39] exist, but they are not
tailored to the requirements of tables in the data wrangling domain. To
clarify what types of constraints data transformations can impose on ta-
bles and what impact each transformation will have on these constraints,
we extensively surveyed existing work in data wrangling [21, 31, 68],
databases [7, 39], and data generation [8, 16, 17, 41]. We performed a
comprehensive analysis and summary through the following four steps.

First, we analyzed and summarized 22 commonly used data trans-
formations and their impacts on table changes, based on the multi-table
framework for data wrangling [31] and the semantic descriptions in
Wrangler [21], Trifacta [64], and COMANTICS [68]. These trans-
formations were considered domain knowledge in data wrangling.
Second, we reviewed data constraints in existing constraint solvers
(e.g., Z3 [8, 41] and Clingo [16, 17]) and relational databases (e.g.,
NOT NULL, UNIQUE). We identified the specific characteristics each
constraint imposes on tables, yielding a candidate pool of constraints.
Third, we established a mapping (see Sec. 1 of the supplementary
material for details) showing the effects of the 22 transformations on

table constraints from the candidate pool. This mapping guides the
construction of input/output constraints for individual transformations,
further described in Sec. 3.3. During construction, we found some
constraints, like statistical constraints requiring a specific distribution
(e.g., normal distribution), indicating that they do not contribute to
expressing the semantics of these transformations. Thus, we removed
these constraints from the pool. We also introduced new constraints
to better capture the semantics of transformations, such as the derived
relation describing the specific transformation that produced the current
column. Fourth, we organized and categorized the updated candidate
pool, resulting in ten types of constraints (see Sec. 3.2) that express the
table space in data wrangling.

To validate the effectiveness of the ten table constraints and their
mapping to data transformations, we conducted an experiment using a
real-world dataset from COMANTICS [68], which included 921 lines
of data transformation code with its data. In this experiment, we exe-
cuted each line of code in the dataset and obtained its input and output
tables. Thereafter, we checked whether these tables complied with the
constraints specified in our mapping for the corresponding transfor-
mations and assessed if additional table constraints were required to
further clarify the semantics. The results of the experiment showed that
all input and output tables adhered to the constraints specified in our
mapping, and no additional table constraints were needed.

3.2 Constraint Types
This subsection describes the ten types of table constraints highlighted
in bold as follows. Note that these constraints are applied to the table
columns to express the input/output table space.

• Data types for columns are classified into four common cat-
egories: Character, Numeric, Date, and Logic. Some of the
following nine table constraints vary based on the data type.

• Range represents the value ranges for Numeric/Date data and the
string length boundaries for Character data. Using string length
as the range for Character not only aligns with the continuous
nature of Numeric/Date ranges for unified visualization, but also
helps uncover errors in operations like ‘substr’ that rely on string
length, thereby facilitating debugging (as described in Sec. 5.2).

• Format specifies the text format of data values. We use format
patterns (e.g., ‘0.00’ and ‘yyyy-mm-dd’) for Numeric/Date data
and regular expressions (e.g., ‘\w+’) for Character data.

• Order represents the sorting of data values (e.g., ascending, de-
scending, or disordered)

• Specific Value denotes particular values within the data.
• Missing Value refers to absent data values (e.g., NA, NULL).
• Duplicate Value represents repeated values within the data.
• Comparative relation focuses on the comparison between

columns. It defines numerical/temporal comparisons (e.g., less
than < and greater than >) for Numeric/Date data and set rela-
tions (e.g., substring ⊂) for Character data.

• Combination relation describes conditions where multiple
columns need to satisfy the same constraint. For example, for
Numeric columns, the sum of Columns A and B must be less than
10. For Character columns, the concatenated values of Columns
A and B must be unique. For Date columns, the time difference
between Columns A and B cannot exceed one day.

• Derived relation emphasizes that values in specific columns are
derived from other columns. For example, Column B values are
derived from algebraic operations on Column A (e.g., B = A+2).

3.3 Mapping Data Transformations to Table Constraints
To construct the input and output space for individual transformations,
we analyzed the impact of transformations on constraints and built a
mapping between them (see Sec. 3.1). For each transformation, we first
identified the required columns in the input table and the constraints that
these columns must satisfy for the transformation to be executed cor-
rectly. For example, with the R code df2 = drop_na(df1, colA),
df1 must contain column colA for the code to execute successfully.
Additionally, based on the semantics of this code, missing values are

allowed in colA of the input table (Constraint 1). To enrich the under-
standing of the input space, i.e., what input the code can handle, we
introduced semantic constraints (like Constraint 1) that can reveal the
semantics of the transformation to indicate the possibilities in the input
table. Semantic constraints are optional and not mandatory for the input
table to satisfy. During the construction of the mapping, we found some
semantic constraints that we recommend satisfying to avoid potential
errors. For example, in the code tbl2 = filter(tbl1, colB>60),
apart from the constraint that tbl1 must contain a column colB with a
numeric data type (Constraint 2), we also include a semantic constraint
that the values in colB may be > 60. However, if all values in colB of
tbl1 are ≤ 60, the output table tbl2 will be empty, rendering subsequent
transformations/analyses meaningless. Hence, we recommend that
colB should have at least one value > 60 (Constraint 3). Constraints
like this, which can affect the output results, are recommended to have
some values in the input that satisfy the constraint, which can facilitate
users in debugging potential issues in the output table. Furthermore,
considering all the constraints of the input table, we analyzed the con-
straints that the output table would possess after the transformation. For
example, in the aforementioned drop_na example, the output table df2
has a constraint that there are no missing values in colA (Constraint 4).

As shown above, constraints can be categorized into four scopes
based on the required quantity of satisfying data values:

• (A) all values must satisfy the constraint (e.g., Constraint 2).
• (N) all values do not satisfy the constraint (e.g., Constraint 4).
• (E) exist values that satisfy the constraint (e.g., Constraint 3).
• (O) optional values satisfy the constraint (e.g., Constraint 1).

4 FERRY SYSTEM

4.1 Requirement Analysis

Our goal is to help data workers understand the input and output space
of data wrangling scripts, facilitating script reuse, data onboarding, de-
bugging, and maintenance. We interviewed two data scientists (E1-E2)
and two data analysts (E3-E4) from a national research laboratory who
frequently engage in writing and understanding data wrangling scripts
on a daily basis. The interviews aimed to identify their needs, strate-
gies, and challenges in understanding scripts inputs and outputs. They
emphasized that understanding script inputs and outputs is essential for
many tasks. E3 noted, “When reusing a [data wrangling] script from
the web, I need to first figure out if it can handle my data and how well
the output matches my expectations before deciding to reuse it.” E1
added that using her data often led to runtime errors or abnormal output
(e.g., NA values). Debugging these errors by analyzing the script is
time-consuming. A tool that directly reveals script inputs and outputs,
and explains failures or unexpected outputs, would greatly enhance
their efficiency.

Inspired by our survey and analysis that constraints can express the
input/output space of scripts (Sec. 3), we demonstrated examples of
table space defined by constraints to our interviewees to verify whether
this method could help their understanding of the input/output space.
They unanimously agreed to that method, and E1 commented, “Com-
pared to individual data tables, table space constructed by constraints
could reveal a more comprehensive picture of script inputs and outputs.”
Additionally, they expressed a desire for the tool not only to reveal
script inputs and outputs but also to facilitate their subsequent tasks.
Following the guidelines proposed by Munzner [44], we iteratively ex-
tracted and summarized the following six design requirements through
multiple rounds of discussions.
R1: Reveal input and output table space. Understanding the input

and output of a script is crucial for data workers to complete
various tasks. E4 remarked, “Displaying the input a script can
process, along with its potential output, significantly economizes
time during script reuse.” Our interviewees recognized the use
of constraints to reveal the input/output space. Consequently, the
system needs to extract constraints and construct the table space.

R2: Explain table constraints. As table constraints are presented
using symbols, formulas, or patterns (such as regular expressions),
these representations are abstract to people. The situation gets

tougher as a table space is usually constructed by multiple con-
straints. Users face challenges in understanding the overall effects
of these constraints on the table. Therefore, a clear explanation of
the constraints is required to facilitate comprehension.

R3: Support modification of constraints. Data workers desire to
adjust table space if the script’s input is inconsistent with their
existing data or if the current output does not align with the re-
quirements of downstream tasks. E2 stated, “When looking for
data trends, I prefer the output data not to contain missing val-
ues.” Therefore, the system should enable users to add, modify,
or remove table constraints.

R4: Detect the conflict. Conflicts can uncover issues within scripts,
as well as discrepancies between scripts and data, and between
scripts and user requirements. There are two types of conflicts: (1)
conflicts between constraints, due to script errors or user modifica-
tions clashing with existing constraints; and (2) conflicts between
constraints and data, when current data and script constraints
mismatch, possibly causing execution errors or unexpected out-
put. Consequently, the system needs to detect these conflicts and
elucidate their origins or the implicated data to users.

R5: Reveal associations between data columns. Disentangling col-
umn associations helps users understand how constraints derive
from the input to output. When users modify output constraints,
they need to determine which input column constraints are af-
fected. Similarly, when user-uploaded data conflicts with an input
constraint, users need to identify the affected output columns.

R6: Locate the origins of constraints. Locating the origins of con-
straints greatly aids users in understanding and debugging scripts.
For example, onboarding new data can lead to conflicts with the
script’s existing constraints. Locating the source of the constraints
can identify the causes of conflicts and the related code, facilitat-
ing the debugging process and completing downstream tasks.

4.2 System Overview
In response to the above requirements, we designed and developed
Ferry to help users understand the input/output table space of data
wrangling scripts. Ferry encompasses three views (Fig. 1): A) The
Script View contains a script editor showing data wrangling scripts
and supports script modification and locating of the constraint origins
(R6). A lineage graph at the top shows the association of data columns
involved in the transformation (R5). Constraints for the input and
output table space are generated after users upload scripts (R1). B)
The Constraint View displays the input and output table space (R1) and
sample data for each column (R2). Users can select tables for display
and apply filters to refine constraint types and scopes. When users
upload new data, any conflicts with the constraints are highlighted (R4).
C) The Detail View provides in-depth information on each constraint
within a data column. Users can access explanations and sample data
for each constraint (R2). Conflicting entries between a constraint and
uploaded data are presented (R4). The Detail View also provides origin
tracing and allows for modifying constraints (R3).

4.3 Script View
The Script View (Fig. 1A) presents user-uploaded scripts (Fig. 1A1) and
the lineage of data columns specifically involved in transformations
(Fig. 1A2). This view displays a summary of data transformations,
supports script modification, and illustrates the origins of constraints
(R6). In the top-right corner of the Script View, distinct buttons are
available for uploading user scripts and generating constraints for the
current script. Ferry activates a constraint generator (Sec. 4.3.1) to
produce the input and output table space (R1). It generates a node-link
diagram that visualizes the lineage of the relevant data columns (R5).

Lineage Graph. Lineage Graph’s nodes symbolize data columns,
each with an icon denoting its data type. The edges between nodes
represent the data transformations. As shown in Fig. 1A3, State_Abbr
extracts data from Origin that matches the regular expression _(\\w+).
The data is merged with Stu_Info and GPA to update Stu_Info, which
is sorted in descending order. If input constraint conflicts are detected
upon data upload, the Lineage Graph will display a conflict icon on the

Input Constraints

Type: Character (All)

Format: ['\w{2}/\d{4}_\d{2}/\w+' (Exist)]

...

Input Table Space InferenceA

Output Constraints

Type: Character (All)

Format: ['\w{2}/\d{4}_\d{2}/\w+' (Not)]

Comparative Relation: Substring(Page) (Exist)

Derived Relation: article_id = replace(Page) (All)

...

Forward InferenceB

article_id = str_replace Page, , ()'\\w{2}/\\d{4}_\\d{2}/\\w+' '')

A1

B1
Backward Inference

article_id = str_replace Page, , ()'\\w{2}/\\d{4}_\\d{2}/\\w+' '')

Output Constraints

Format: ['\w{2}/\d{4}_\d{2}/\w+' (Not) , '\d+' (Exist)]
...

Input Constraints

Format: ['\w{2}/\d{4}_\d{2}/\w+' (Exist) , '\d+' (Exist)]

D

...

stats <- read_csv

stats <- mutate stats, article_id = str_replace Page, ,

stats <- mutate stats, Page = str_replace Page, ,

stats <- mutate stats, section = str_extract Page,

stats <- mutate stats, article_id = as.numeric article_id

()

()

()

()

()

'./stats.csv'

'\\w{2}/\\d{4}_\\d{2}/\\w+' ''

'\\w{2}/\\d{4}_\\d{2}' ''

'(\\w+)'

()

()

()

()

1

2

34

C Backward Propagation
Data Wrangling

Scripts

Table Constraints

Fig. 2: Constraint Generator workflow. (A) Input Table Space Inference extracts information from code to generate constraints for the input; (B)
Forward Inference uses code information to generate output constraints and transfer constraints from input to output; (C) Backward Propagation
updated constraints from subsequent steps to preceding ones; (D) Backward Inference transfers constraints to the input from the output.

corresponding nodes. It will also highlight conflicting columns and their
paths, indicating effects on related outputs. When output constraints
are modified, the nodes and paths of affected input columns will be
highlighted with color-coding. This color-coding reflects the scope of
the modifications, thereby revealing the impacted input columns.

4.3.1 Constraint Generator
We designed and implemented a Constraint Generator that extracts
information from the data wrangling scripts to construct the input and
output table space. The Constraint Generator comprises four mod-
ules: A) Input Table Space Inference, generating input constraints
for single-step data transformation; B) Forward Inference, generating
output constraints for single-step data transformation; C) Backward
Propagation, propagating updated constraints from subsequent steps
to previous ones; and D) Backward Inference, which serves Backward
Propagation by transferring updated constraints from output to input.
A detailed description of these four modules is provided below:

Input Table Space Inference. Input table constraints are extracted
based on the predefined mapping between data transformation types and
constraints (Sec. 3.3). For instance, str_replace(Page, ‘\\w{2}
/\\d{4}_\\d{2}/\\w+’, ‘’), which implements a replace data
transformation (Fig. 2A). According to the mapping, this transfor-
mation generates the input table’s constraints (e.g., type and format).
The content of these particular constraints is determined by the function
utilized in the code and its corresponding parameters (Fig. 2A1).

Forward Inference. After constructing the input table space for a
transformation step, we apply forward inference through the code to
generate the output table space for the current step (Fig. 2B). In this step,
following the established mapping (Sec. 3.3), we generate constraints
for the output and propagate applicable input constraints to the output.
Output constraints are generated based on data transformation and code
parameters (e.g., format), while unaffected constraints (e.g., type) are
propagated from input to output (Fig. 2B1).

Backward Propagation. In the first two steps, the Constraint Gener-
ator incrementally builds and expands the table space, which renders the
constraints within the tables more specific. This specificity allows for
the refinement of prior constraints. For instance, as shown in Fig. 2C,
the article_id is converted from a character to a numeric type in the
fifth step. This conversion generates a semantic constraint, as defined
in Sec. 3.3, that requires at least one value in article_id to match a
digital format, conforming to the regular expression "\d+". The input
column article_id for this step is derived from the Page in the second
step (Fig. 2C1). Since the constraints for article_id have been updated,
the constraints for Page must be correspondingly updated (Fig. 2C2).
After the Page is updated, the revised content is propagated through
Forward Inference to subsequent steps (Fig. 2C3). In this code block,
the Page is transformed to generate new columns, Page and section
(Fig. 2C4). Backward Propagation is triggered when Input Table Space
Inference updates the constraints of a derived column that does not

exist in the input table. As depicted in Fig. 2C, updating the constraints
of article_id by the Constraint Generator triggers. This process termi-
nates when it updates columns in the original data table, exemplified
by the Page column in Fig. 2C, or when updated constraints cannot be
transferred to the input table space.

Backward Inference. During Backward Propagation, con-
straints from the output table space are transferred back to the in-
put table space (Fig. 2C2). As illustrated in Fig. 2D, the Back-
ward Propagation process updates the output (add the constraint
"\d+" (Exist)) of the code: article_id = str_replace(Page,
‘\\w{2}/\\d{4}_\\d{2}/\\w+’, ‘’). Backward Inference deter-
mines whether the updated constraints can be propagated to the in-
put based on the transformation type and parameters. In this case,
"\d+"(Exist) is transferable and is propagated to the input space.

Our prototype system currently supports 28 common R functions,
such as filter, drop_NA and substr (see Sec. 2 of the supplemen-
tary material for details). When encountering unsupported functions,
Ferry alerts the user and highlights the relevant code in the script, and
only displays the input/output space results parsed up to that code.

4.4 Constraint View
The Constraint View (Fig. 1B) shows input and output table space
constraints for the current script (R2). The Upload Data button en-
ables users to upload data for onboarding. Ferry’s Conflict Detector
(Sec. 4.4.1) identifies conflicts between the uploaded data and exist-
ing constraints (R4); upon detection, the corresponding conflicting
constraints are highlighted within the Constraint View. The view pro-
vides two filters enabling constraint selection and display by type and
scope. The main area of the Constraint View contains two table space
panels: by default, the upper panel displays the input, and the lower
panel displays the output table space. The upper-left corner of each
table space panel displays an input/output label, a source icon (file or
variable), the table’s name, and a table space selector. The upper-right
corner contains a conflict menu to view all conflicts. Each column
in the table space panel is split into two sections: the upper section
displays constraints (Fig. 1B1), and the lower section presents sample
data (Fig. 1B2) from Ferry’s Sample Data Generator (Sec. 4.4.2) (R2).

Constraint Scope Color Encoding. Currently, constraints are cate-
gorized into four scopes (Sec. 3.3), each encoded with a distinct color:
green for All (A), orange for Not (N), blue for Exist (E), and purple
for Optional (O). Within the Constraint View, all constraint tags (see
Fig. 1D) adhere to this color-coding scheme.

Table Space Panel. The table space panel displays the columns of
the selected table space. Each column is divided into an upper section
showing its constraints and a lower section displaying sample data
consistent with those constraints. An icon that represents the semantic
meaning of each constraint type is used to convey the distinct types
of constraints. Icons for type, missing value, duplicate value, and
order constraints appear at the column’s top (see Fig. 1E) when their

Conflict

10 12 infinite

All

14 20

Not

12 13 16 infinite

All

18 20

ExistOptionalA B

Fig. 3: In the table space panel, the Range component uses overlay
bars to represent different scopes (A), allowing the representation of
non-continuous ranges and data conflicts (B).

scopes are All, Exist, or Optional. An overlay bar chart visualizes
range constraints, as illustrated in Fig. 3A. The base layer of the chart is
gray, signifying the full potential span of the range (e.g., for Character
type data, the range indicates the string length, with a minimum of 0
and a maximum of infinity). We stack bars of other colors (based on
the previously defined scope color encoding) onto the base layer to
represent different constraint ranges (as shown in Fig. 3A), including
discontinuous ones. For example, in Fig. 3B, the green bar indicates that
all data should fall within the range starting from 12, while the orange
bar indicates that no data should exist between 14 and 20, resulting
in a discontinuous range: from 12 to 14 and from 20 onwards. If
data conflicts with the range constraint, a red bar appears (e.g., the bar
with data ranging from 10 to 12 in Fig. 3B). Other types of constraints
are represented with the constraint tag, as shown in Fig. 1D. An icon
representing the constraint type is in a dark box on the left, while the
right side shows the constraint content. The color of the constraint tags
aligns with the previously defined scope color encoding. Uploaded
data may conflict with existing constraints, which results in a conflict
icon being displayed to the right of the constraint tag, as depicted in
Fig. 1D. Within each column, constraint tags are arranged by scope,
with tags representing constraints that affect a larger quantity of data
placed in earlier positions (i.e., All, Not, Exist, and Optional). Conflicts,
requiring user attention, are marked with red color encoding. Variations
in red color encoding for conflicts are shown in different components,
as illustrated in Fig. 1D and Fig. 1E. Furthermore, conflict-indicating
tags are placed at the top of the column, regardless of their scope.
Additionally, columns with conflicts are moved to the leftmost side of
the panel, ensuring that users can readily spot them.

Overview Detail

digit

2

digit

4

A-Z

+

3-5

4

space
4

Fig. 4: Design alternatives for visualizing constraint’s overview and detail.

Design alternative. During our iterative design process, we ex-
plored various approaches to visualizing constraints based on feedback
from experts (E1-E4, detailed in Sec. 4.1). Initially, we followed the
“overview to detail” design philosophy [55], creating representations for
constraints at multiple levels of granularity, as illustrated in Fig. 4. For
the overview, we experimented with a matrix in the table space panel,
using colors to denote constraint types and gradients to indicate their
quantities. However, our iterative evaluations, including testing and
discussions with the experts, revealed that the matrix visualization did
not sufficiently support deeper explorations based on constraint types
or quantities within the table space. For the details, we considered
methods such as visualizing regular expressions to help understand the
constraints’ content. Despite their potential to clarify complex concepts,
expert preferences were strongly inclined towards directly viewing the
constraints themselves, supplemented by sample data conforming to
these constraints. Therefore, we shifted to a direct visualization ap-
proach (Fig. 1B1) supplemented with illustrative examples (Fig. 1B2).

Interactions. Users can upload data by clicking the Upload Data
button at the top of the view and using the selector to determine the
types and scopes of constraints for display in the table space panel.
Within each column of the table space panel, clicking a column name
displays all associated constraints in the Detail View, whereas clicking
an individual icon or constraint tag shows details for that specific

constraint. Clicking an icon or constraint tag locates the origins of the
constraint in the Script View’s script editor using color.

4.4.1 Conflict Detector

The Conflict Detector is designed to recognize the two categories of
conflicts mentioned in the previous requirements (R5): (A) Conflicts
between constraints and (B) Conflicts between constraints and data.

Conflicts between constraints. This type of conflict primarily
encompasses two scenarios: First, conflicts among data transformations
within the scripts indicate errors that occur during the scripting process.
Second, conflicts caused by modifying constraints contradict existing
ones. Detecting such script conflicts aids users in both identifying errors
within the script and recognizing discrepancies between the script and
current task requirements, thereby informing necessary script revisions.

Conflicts between constraints and data. Detecting this type of
conflict identifies inconsistencies between user data and scripts, thereby
detecting execution errors or potential data errors in the output. It
also uncovers script deficiencies that fail to transform the input into
the expected output. For instance, when a user modifies the output
constraints to require a column containing no missing values, but the
script does not execute a drop_na operation on that column. If the
input contains missing values in that column, this leads to a conflict,
signifying the script’s current inability to process such missing values.

4.4.2 Sample Data Generator

One type of constraint can denote an attribute of data, such as range or
format. Constraints enable data workers to efficiently extract attribute-
specific information. However, when data workers need to understand
table space, integrating different types of constraints becomes a difficult
task, increasing their cognitive burden.

A Sample Data Generator was designed to address the challenges of
integrating constraints for table space comprehension. Initially, we used
only the Z3-solver [8, 41] to generate sample data. However, this data
lacked semantic richness, impeding user comprehension. To enhance
sample data generation, we employed GPT-4 [46] alongside the Z3-
solver. Based on expert discussions, we chose the Z3-solver for precise
numeric data generation and GPT-4 for generating semantically rich
data. Constraints were translated into Z3-solver-compatible formats
and GPT-4-suitable prompts. Experiments showed that the Z3-solver
consistently produced stable data, while GPT-4’s outputs occasionally
violated constraints. To address this issue, prompts were restructured
into subtasks and simpler constraints were used in a rules-based gen-
eration approach (e.g., duplicates, missing values, etc.). A validation
process was implemented to ensure data accuracy by identifying and
regenerating any samples that failed to meet the constraints.

4.5 Detail View

The Detail View (Fig. 1C) is designed to present comprehensive in-
formation on constraints (R2). Within the Constraint View, clicking a
column name populates the Detail View with its constraints; clicking a
constraint tag reveals details of that specific constraint. A button in the
top-right corner lets users append new constraints to existing columns
(R3). Detail View provides explanations and examples to elucidate con-
straints, enhancing user understanding. Detail View supports multiple
operations on constraints, including editing content and labels (R3),
tracing origins within scripts (R5), and deleting them. Should conflicts
arise between user-uploaded data and constraints, the Detail View will
display the conflict data (R5), facilitating the identification of causes.

Constraint information. When a user selects a constraint tag, the
tag expands to reveal two primary information categories: (1) Explana-
tion of constraint, and (2) Example of constraint. In the Explanation
of constraint section, the system describes the constraint in natural
language to assist users in understanding its content. Recognizing that
some users might not easily understand natural language descriptions,
we provide sample data in the Example of constraint section.

Conflict data. If the uploaded data conflicts with an existing con-
straint, the Conflict section appears in the expanded constraint tag. The
Conflict section lists instances of uploaded data that fail to meet the

constraint. Located below the Example of constraint, this section helps
users compare discrepancies between the conflict and the example.

Constraint operation. In the expanded constraint tag’s lower part,
there are two sections: Modify constraint and Constraint operations. In
the Modify constraint section, users can edit the current constraint’s
content and scope. Afterward, by clicking the Submit button in the
Constraint operations section, Ferry will recalculate the modified con-
straints, update the table space, and assess whether the modification
conflicts with other constraints. Additionally, the Delete button, located
to the right of the Modify constraint section, allows users to remove
the current constraint. Similar to modification, Ferry will update the
table space and check for potential conflicts. Upon clicking the Posi-
tion button on the left of the Constraint operations section, the system
highlights the corresponding code within the Script View’s script editor.
A correlation is thus facilitated between constraints and their source
scripts, enhancing understanding and facilitating code reuse.

5 EVALUATION

This section demonstrates Ferry’s effectiveness and usability through
two usage scenarios, two case studies, and user interviews. Besides, an
example application has been implemented to showcase its flexibility.

5.1 Usage Scenarios
5.1.1 Onboarding New Data Into an Existing Script

B Type in Grad

3 Grad = as.Date Grad, c()()"%Y/%m/%d"

Grad: Character ExpectG: Date

Issue: Mismatch type2

1

Delay_Day = Grad - ExpectG

Original Code

A Format in Origin

Issue: Regex mismatch with data

“NA”

State_Abbr = str_extract Origin, ()'_(\\w+)'

Original Code

Example of Conflict Data

_abc

_ABC

_abcd

Texas(TX)/...

Florida(FL)/...

Illinois(IL)/...

2

3 str_extract Origin, ()'[A-Z]{2}'

1

'_(\\w+)'

Fig. 5: Two initial issues presented by Ferry: (A) Data in Origin not
matching the regular expression for extraction; (B) Data type mismatch
between Grad and ExpectG.

In this scenario, Windy, a data analyst, was tasked with preprocessing
data exported from a student information system for follow-up analysis.
However, due to recent system updates that caused changes in the data,
she encountered issues when directly onboarding the new data into an
existing data wrangling script. This scenario demonstrates how Windy
used Ferry to resolve these issues and modify the original script.

Windy uploaded the script to Ferry and clicked the Run button. The
Constraint View represented the input/output space of the current script.
Upon uploading the data, she identified the following two conflicts
(Fig. 5A1 and B1) within the Constraint View.

Format Issue in Origin. Windy first investigated the format conflict
issue in the Origin. After she clicked on the corresponding constraint
tag (Fig. 5A1), the script editor highlighted the conflicting code (see
Original Code in Fig. 5A) and the Detail View presented example
data that both comply with and conflict with the constraint (Fig. 5A2).
Windy discovered a mismatch between the regular expression and the
Origin’s value, causing "NA" in the output. She observed that the con-
flict’s propagation on the Lineage Graph (Fig. 1A1) could compromise
the output Stu_Info’s value. Thus, resolving the conflict was crucial.
Based on the format characteristics of the new data, Windy revised the
extraction rule of the code (Fig. 5A3).

Type Issue in Grad. Subsequently, Windy clicked the red icon
(Fig. 5B1) in Grad. The Detail View showed that its expected data type
should be Date, while it currently was Character (see Issue in Fig. 5B2).
This is because calculations with ExpectG (Date type) require Grad

Length in Major

:MajorFirst Revision Code
Duration = substr Info, , ,

Id = str_extract Info,

()
()

8 8
'\\d{3}$'

Second Revision Code
Duration = str_extract Info, ()‘\\d{1}(?=...$)’

1

2

3

4

Major Length
2015MA3250
2016CY3297
2014CSE4042

Conflict Data
2015MA3250
2016CY3297

Expected
2015MA3250
2016CY3297

Issue: Inconsistent Major length

B
:Duration :Id

Id = substr Info, , ,

Duration = str_extract Info,

()
()

8 10
'\\d{1}$'

Original Code

Duration:

Info:

ExpectedConflict Data
2014CSE4042
2014ELE5056
2015COM4078

2014CSE4042
2014ELE5056
2015COM4078

Postion in Duration, Id

3

1

2

Issue: Duration and Id swapped

A

Fig. 6: Two additional issues after modification: (A) incorrect extraction
positions for Duration and Id ; (B) inconsistent string length for Major.

also to be Date. Therefore, Windy added the type conversion code
(Fig. 5B3) before the original code in the script.

After making these modifications, Windy clicked the Run button.
Ferry generated new conflict-free constraints, indicating that the pre-
vious issues had been resolved. Windy then examined these new con-
straints with their sample data to verify the absence of further issues.

Extraction Issue in Duration, Id. Windy found that the Range of
Duration was [0-9], which did not meet the expected duration of 3 to 5
years for a student program. She then clicked the Range constraint of
Duration, modified the Range in the Detail View to [3-5], and changed
the scope to All (Fig. 6A1), ensuring all data in Duration conformed to
this range. This modification caused a chain effect in the Format con-
straint of Info, which replaced ‘\d{1}$’ with ‘[3-5]{1}$’, bringing
a new conflict with data (Fig. 6A2). Windy clicked the constraint tag
to review the conflict data in the Detail View (Fig. 6A3). She found
the last digits in Info did not fall within the range [3-5], but the fourth-
to-last digits did. She realized Info’s organization had changed: the
student’s Id (originally in the 8th-10th positions) and the Duration
(originally the last digit) had been swapped (see Issue in Fig. 6A3).
Therefore, the original code for generating the Id and Duration (see
Original Code in Fig. 6A) needed to be modified (Fig. 6B1).

Length Issue in Major. After re-executing the modified script,
Windy observed a new Format conflict in Info due to the regex pattern
"(?<=ˆ.{7})[3-5]", which required the eighth character to be a digit
between 3 and 5 (Fig. 6B2). Upon further review of the conflict data
in the Detail View, she found that discrepancies in the length of Major
caused the issue with the expected position of Duration (see Issue
in Fig. 6B3). While most Major entries comprised three characters,
the presence of two-character entries (Fig. 6B3) led to inaccuracies in
position-based extraction. To rectify this, Windy modified the extrac-
tion code to target the fourth-to-last digits (Fig. 6B4). After rerunning
the script, no conflicts occurred. Windy further verified and confirmed
that the current script met the requirements.

We utilized Unravel [56] to replicate the same usage scenario for
comparison with Ferry (see Sec. 3 of the supplementary material for
details). This usage scenario highlights Ferry’s capabilities in data
onboarding and script debugging, focusing on two key aspects:

• Ferry enhances debugging efficiency by identifying error causes
and locating them in the script. It reduces users’ effort in manually
inferring errors between data and code, such as format errors in
Origin and type errors in Grad (Fig. 5A and B).

• Ferry aids users in uncovering latent errors in the script, such as
Duration extraction necessitating reverse positioning (Fig. 6A),
ensuring comprehensive and accurate debugging.

5.1.2 Debugging Scripts Generated by LLMs

This section outlines how a data worker uses Ferry to debug a script
without data access. Leo, a bank data worker, was tasked with de-
veloping a processing module for customers’ account balances and

investment information. This module, as an integral part of the bank’s
data processing framework, primarily involves three data transforma-
tion tasks: (1) Extract the SurName from the FullName; (2) Generate
the RegDate from the RegYearMonth and RegDay; and (3) Generate
the Assets from the Balance and Loan. To maintain consistency, the
module must be implemented in R using the tidyverse library.

With the rapid development of LLMs (e.g., GPT-4), powerful code
generation has become possible. To reduce workload, Leo decided
to use GPT-4 to generate the script that meets the task requirements.
Due to the sensitivity of the data, Leo could neither directly access it
for debugging nor upload a sample to GPT. He only provided the task
requirements and crafted a prompt to generate the R script. However,
LLM-generated code may contain errors, requiring thorough testing
before deployment. Therefore, Leo used Ferry to examine the generated
script and reviewed the constraints and sample data for each column.

A Extraction in FullName

SurName = str_extract FullName, ()"(?<=\\s).*"

Issue

Sample Data

Original Code

John Smith

Michael Mike Williams

Smith

Mike WilliamsIgnore the middle name

B Missing Values in Assets

Issue
Assets = Balance - Loan

- =

Balance

Original Code

AssetsLoan

2000

NA

3000

100

50

NA

1900

NA

NA

Fig. 7: Issues in the second usage scenario: (A) Ignoring middle names
when extracting Surname from FullName; (B) Missing values in Assets
due to a calculation involving NA values.

Extraction Issue in FullName. He first identified errors in the sam-
ple data for the SurName, which is intended to represent the user’s last
name. However, entries such as "Mike Williams" were found (see Issue
in Fig. 7A). He clicked the constraint tag in SurName. Ferry highlighted
the relevant code (see Original Code in Fig. 7A). After reviewing the
code, he realized that the script failed to account for middle names,
instead extracting all characters following the first space in FullName
as SurName. Leo modified the extraction rule to retrieve the last word
from FullName using the regex "\w+$". After re-executing the script,
he observed that the sample data in SurName was displayed correctly.

Missing Values in Assets. Leo then reviewed the missing values in
the output table space panel. He noticed the missing value icon in Assets.
Upon clicking the column, he found in the Detail View that the scope of
the missing value constraint was set to Optional. According to the task
requirements, Assets is calculated by subtracting the Loan amount from
the account Balance and should not contain missing values. To identify
the causes of such missing values, he clicked the Position button in the
Detail View, and the Origin Code in Fig. 7B was highlighted. Leo knew
that in R, any numerical calculation involving NA results in NA (see
Issue in Fig. 7B). Thus, missing values in Balance and Loan (indicating
no balance/loan) should be replaced with 0 before calculation.

This scenario illustrates Ferry’s ability to help users understand a
script’s input/output space without executable data. It assists users
in identifying hidden errors, debugging the script, and enhancing its
robustness by providing corner cases and constraints:

• Ferry generates comprehensive sample data using column name
semantics and constraints to help users uncover hidden errors.

• Ferry’s constraints help users identify corner cases, such as miss-
ing values in Assets, thereby enhancing script robustness.

5.2 Case Studies
To further evaluate the effectiveness and usability of Ferry, we recruited
four experienced data practitioners (P1-P4) and conducted two case
studies with them. P1, P2, and P3 are PhD students in data science,
whereas P4 is a professional data analyst. Each has at least three years
of experience in data wrangling, while exhibits varied proficiency in R:
P1 and P3 are highly proficient, P2 and P4 are familiar but primarily use
Python and SQL. During the studies, each practitioner first received a
15-minute training session covering the system’s features, instructions
on interpreting views, and a basic training case. Then, they were asked

to independently complete the two cases, each taking approximately 30
minutes. Finally, the interviews (Sec. 5.3) were conducted to collect
feedback on Ferry.

The first case required practitioners to complete the same task as
described in the first usage scenario (Sec. 5.1.1). We introduce the sec-
ond case in this section about a code verification task without available
data provided. It demonstrates how Ferry assists data practitioners in
verifying input-output compatibility between two modules and guides
them to make necessary adjustments.

A1

A2

A3 Discount_Price

B1

B2

B3 Discount_Price

Module One Output Module Two Input

Fig. 8: Mismatches between the output of Module One and the input
of Module Two: (1) Inconsistent Id string lengths; (2) Missing values in
Sale_Number ; (3) Discrepancies in the units of Discount_Price.

In the second case, data practitioners were tasked with verifying
two sales data processing modules. Module One processes sales data
exported from the system into a manipulable format. Module Two
computes and transforms the data for visual analytics. To ensure module
compatibility, practitioners needed to confirm that the output from
Module One aligned with the input requirements of Module Two.

After uploading the scripts of both data processing modules to Ferry,
practitioners focused on the Constraint View. They adjusted Module
Two’s output constraints to exclude missing values, adhering to down-
stream task requirements. Then, they used the table space panel’s filter
to display Module One’s output on the upper panel and Module Two’s
input on the lower panel for direct comparison. Subsequently, practi-
tioners verified the compatibility between module inputs and outputs
by examining constraints and sample data.

In the Constraint View, Module One’s Id string length was con-
strained to [11-13] (Fig. 8A1), while Module Two required a minimum
of 13 characters for the same column (Fig. 8B1). Consequently, only 13-
character Id outputs from Module One met Module Two’s requirements.
Practitioners traced the origin of the Id constraint in Module One by
expanding the ‘Minimum Length: 11’ constraint in the Detail View and
clicking the Position button. In the script editor of the Script View, the
code Id = str_extract(Id,‘\\w{3}(\\w{2})?\\d{8}’) was
highlighted. Practitioners used the same method to examine why Mod-
ule Two required the Id to have a minimum length of 13. They found
that Product_Id = substr(Id, 6, 13) failed to accommodate Id
columns of only 11 characters. The Id data extraction method re-
quired modification to not solely rely on character position, such as:
Product_Id = str_extract(Id, ‘\\d{8}$’).

An inconsistency arose in Sale_Number: Module One’s output fea-
tured icons for missing and duplicate values (Fig. 8A2), which were
absent in Module Two’s input (Fig. 8B2). Based on the task require-
ments, Sale_Number could contain duplicate values, but missing values
were unacceptable. Practitioners noted in the Detail View that the cur-
rent scope was labeled as Optional, indicating possible missing values.
After reviewing the highlighted code in the script editor, they identified
that executing the separate operation introduced missing values (e.g.,
separating ’ABC/’ by ’/’ leaves the second column empty). Thus, to
guarantee no missing values in the final output, they recommended a
Drop_NA operation for this column: drop_na(Sale_Number).

Practitioners examined Module One’s Discount_Price output with

sample data like 10.123K (Fig. 8A3), whereas Module Two’s input re-
quired values without the ‘K’ suffix (Fig. 8B3). Despite Module One’s
output seeming compatible with Module Two, practitioners reviewed
the script for quality assurance. Discovering that both modules erro-
neously divided Discount_Price by 1000 and compromised accuracy,
practitioners removed the redundant division operation from Module
Two. Ultimately, under Ferry’s guidance, practitioners identified the
causes of the mismatches between the modules.

5.3 User Interviews
After the case studies, we conducted semi-structured interviews to
collect feedback and suggestions on Ferry. All practitioners appreciated
the design of Ferry, including the design within the Constraint View and
the constraint information and operations provided in the Detail View.
Related to daily practice, P2 noted, “I frequently reuse scripts from
code repositories. Ferry enables me to generate the input and output
for those scripts that lack associated data, which assists in verifying the
scripts’ compliance with my requirements.” P3 acknowledged that Ferry
facilitates onboarding and debugging new datasets: “Ferry identifies
mismatches between my data and the script, it indicates the locations
of conflicts within the script, thereby improving code modification
efficiency.” P3 and P4 reported that Ferry enables more comprehensive
debugging of scripts and aids in discovering hidden errors. P1 liked the
Lineage Graph, noting, “The lineage graph delineates the pathways
influenced by conflicts, which helps me find which columns may contain
errors without reading the script back and forth.”

In addition, practitioners provided constructive feedback on Ferry,
suggesting enhancements to further improve the system. (1) P1 and P3
observed that multiple constraints in a single column can overburden
readers. While sample data helps with understanding, data profiling
could familiarize users with the table upfront. P1 suggested improving
constraint-data interaction to aid comprehension. (2) P2 observed that
the detailed column headers in the Constraint View can be cumbersome
for multi-column tables. An overview method in the Constraint View
could narrow the header space of data columns, thereby enhancing
readability. (3) P4 mentioned the case of verifying the compatibility
between two data modules. He proposed interactive mapping or high-
lighting between outputs and inputs to boost reading efficiency. (4) All
practitioners reported that learning to modify constraints, particularly
regular expressions, is challenging for those inexperienced with regex.

5.4 Example Application
This subsection demonstrates how Ferry can be integrated into another
visualization system to aid in understanding the transformation seman-
tics of data wrangling scripts. Existing efforts [51,67] in understanding
data wrangling scripts often rely on executable data. For instance, SOM-
NUS [67] is a script visualization system that generates corresponding
glyphs for each transformation based on input data to depict its seman-
tics. However, the effectiveness of such glyphs would be compromised
when the input lacks data that reflects the transformation semantics. For
example, in Fig. 9A, the input table of the filter transformation does not
have counterexamples to the filtering condition (i.e., colB>60), failing
to manifest the semantics of deleting rows. Moreover, glyphs cannot

tbl2=filter tbl1,colB>()60

colB>60tbl1

colB≤60
tbl1

A

4842

4851

4851

colB

90

80

70

tbl2

A

4842

4851

4851

colB

90

80

70

Keep rows where colB>60

colB

70

90

tbl1

A

4842

4851

4851

tbl2

colB

50

70

90

Keep rows where colB>60

60

Ferry Generated DataBOriginal DataA

Fig. 9: The original data in SOMNUS can not reveal semantics (A), while
data generated by Ferry can reveal semantics (B).

be generated when input data is unavailable or when runtime errors
occur. To address these limitations, we integrated Ferry into SOMNUS
by automatically generating suitable inputs to augment its capability.
Specifically, we modify the mapping summarized in Sec. 3.3 by setting
all semantic constraints of transformations as the Exist label and utilize
the synthetic data generated by the Sample Data Generator (Sec. 4.4.2)
as the input for the script. Fig. 9B illustrates an example of glyphs
generated by SOMNUS before and after integrating Ferry.

6 DISCUSSION

Evaluation: In this paper, we utilize ten types of table constraints to
express script input/output space. While we verified these constraints
and their mappings to transformations on a real-world dataset [68],
the extent to which the constraints generated by Ferry can capture
the scope of input/output and meet the needs of data workers in vari-
ous downstream tasks requires further validation. In future work, we
plan to recruit more users and design more diverse tasks to conduct
comprehensive studies.

Scalability: Our constraint generation model is rule-based and cus-
tomized for transformation code. Currently, Ferry’s prototype supports
28 common functions from the tidyverse library in R. However, imple-
mentations of data transformations vary significantly across program-
ming languages, and extending our work to various codes presents a
tedious and labor-intensive challenge. COMANTICS [68] leverages an
AI model to automatically infer the semantics of data wrangling code
but requires executable input data. In the future, we will explore using
large language models for static semantics inference and constraint
extraction with sample data validation.

Capability: Ferry’s capability is limited in two aspects. First, Ferry
progressively enriches the constraints of input/output tables through
step-by-step transformation parsing, yielding increasingly clear table
space. However, some transformations hinder the accumulation and
propagation of constraints. For example, fold/unfold can alter a table’s
schema, and summarize operations will combine rows by aggregation,
both of which renders previously inferred constraints invalid. Sec-
ond, Ferry can identify the causes and locations of conflicts within
scripts. However, it currently lacks the capability to recommend code
modifications to users. Future iterations will focus on developing a
human-in-the-loop technique that integrates machine insights with hu-
man expertise and user intent to enhance Ferry’s usability.

Opportunity: In addition to providing explanatory input data to
convey transformation semantics (see Sec. 5.4), Ferry has potential
applications in other scenarios. For example, Ferry could be extended
to support script annotation to foster comprehension and collabora-
tion. While it is common for programmers to annotate a function’s
input/output, specifying the input/output tables, which are 2-D data
structures with multiple rows and columns, for a data wrangling mod-
ule is not as straightforward. To bridge this gap, text comments or
documentation describing the input/output of data wrangling modules
can be generated based on the table constraints obtained from Ferry.

7 CONCLUSION

In this work, we present Ferry, an interactive visual analysis system that
reveals the input/output space of data wrangling scripts. Ferry assists
users in comprehending the space through three coordinated views that
visualize the input/output space along with sample data. The system
uses a constraint generation model, informed by a mapping between
data transformations and ten types of constraints for expressing the table
space. Our evaluation demonstrates that Ferry is effective in facilitating
the understanding of the script input/output and completing various
tasks, such as onboarding data, debugging, and validating scripts.

8 ACKNOWLEDGMENTS

The work was supported by National Key R&D Program of China
(2022YFE0137800), Key “Pioneer” R&D Projects of Zhejiang
Province (2023C01120) , NSFC (U22A2032), and the Collaborative
Innovation Center of Artificial Intelligence by MOE and Zhejiang
Provincial Government (ZJU). We gratefully thank the anonymous
reviewers for their valuable comments.

REFERENCES

[1] Z. Abedjan, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, and M. Stone-
braker. DataXFormer: A robust transformation discovery system. In
Proceedings of the IEEE 32nd International Conference on Data Engi-
neering (ICDE), pages 1134–1145, 2016. 2

[2] R. Abreu, B. Hofer, A. Perez, and F. Wotawa. Using constraints to diagnose
faulty spreadsheets. Software Quality Journal, 23(2):297–322, 2015. 2, 3

[3] R. Barták. Constraint programming: What is behind. Proceedings of
CPDC99, pages 7–15, 1999. 3

[4] A. Bigelow, C. Nobre, M. Meyer, and A. Lex. Origraph: Interactive net-
work wrangling. In Proceedings of IEEE Conference on Visual Analytics
Science and Technology (VAST), pages 81–92, 2019. 2

[5] R. Chen, D. Weng, Y. Huang, X. Shu, J. Zhou, G. Sun, and Y. Wu. Rigel:
Transforming tabular data by declarative mapping. IEEE Transactions on
Visualization and Computer Graphics, 29(1):128–138, 2023. 2

[6] T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning.
John Wiley, 2003. 2

[7] C. de la Riva, M. J. Suárez-Cabal, and J. Tuya. Constraint-based test
database generation for SQL queries. In Proceedings of the 5th Workshop
on Automation of Software Test, pages 67–74, 2010. 3

[8] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proceedings
of the Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340, 2008. 2, 3, 6

[9] B. Demsky and M. Rinard. Automatic detection and repair of errors in
data structures. ACM SIGPLAN Notices, 38(11):78–95, 2003. 3

[10] P. Deransart, M. V. Hermenegildo, and J. Maluszynski. Analysis and visu-
alization tools for constraint programming, constrain debugging (discipl
project). volume 1870. Springer, 2000. 3

[11] G. Dooms, P. Van Hentenryck, and L. Michel. Model-driven visualizations
of constraint-based local search. Constraints, 14(3):294–324, 2009. 3

[12] I. Drosos, T. Barik, P. J. Guo, R. DeLine, and S. Gulwani. Wrex: A unified
programming-by-example interaction for synthesizing readable code for
data scientists. In Proceedings of the CHI Conference on Human Factors
in Computing Systems, pages 1–12, 2020. 2

[13] B. Elkarablieh and S. Khurshid. Juzi: A tool for repairing complex
data structures. In Proceedings of the 30th International Conference on
Software Engineering, pages 855–858, 2008. 3

[14] M. Excel. Microsoft Excel Spreadsheet Software. https://www.
microsoft.com/en-us/microsoft-365/excel. 2

[15] X. Gao, B. Wang, G. J. Duck, R. Ji, Y. Xiong, and A. Roychoudhury.
Beyond Tests: Program Vulnerability Repair via Crash Constraint Ex-
traction. ACM Transactions on Software Engineering and Methodology,
30(2):1–27, 2021. 3

[16] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo = ASP +
control: Preliminary report. CoRR, abs/1405.3694, 2014. 3

[17] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and
M. Schneider. Potassco: The Potsdam Answer Set Solving Collection. AI
Communications, 24(2):107–124, 2011. 3

[18] M. Ghoniem, H. Cambazard, J.-D. Fekete, and N. Jussien. Peeking in
solver strategies using explanations visualization of dynamic graphs for
constraint programming. In Proceedings of the ACM Symposium on
Software Visualization, pages 27–36, 2005. 3

[19] M. Ghoniem, N. Jussien, and J. Fekete. VISEXP: visualizing constraint
solver dynamics using explanations. In Proceedings of the Seventeenth
International Florida Artificial Intelligence Research Society Conference,
Miami Beach, Florida, USA, pages 263–268, 2004. 3

[20] S. Goodwin, C. Mears, T. Dwyer, M. G. de la Banda, G. Tack, and M. Wal-
lace. What do Constraint Programming Users Want to See? Exploring
the Role of Visualisation in Profiling of Models and Search. IEEE Trans-
actions on Visualization and Computer Graphics, 23(1):281–290, 2017.
3

[21] P. J. Guo, S. Kandel, J. M. Hellerstein, and J. Heer. Proactive wrangling:
Mixed-initiative end-user programming of data transformation scripts.
In Proceedings of the 24th Annual ACM Symposium on User Interface
Software and Technology, pages 65–74, 2011. 2, 3

[22] B. Haugen and J. Kurzak. Search Space Pruning Constraints Visualization.
In Proceedings of the Second IEEE Working Conference on Software
Visualization, pages 30–39, 2014. 3

[23] J. Heer and A. Perer. Orion: A system for modeling, transformation and
visualization of multidimensional heterogeneous networks. Information
Visualization, 13(2):111–133, 2014. 2

[24] B. Hofer, A. Riboira, F. Wotawa, R. Abreu, and E. Getzner. On the

Empirical Evaluation of Fault Localization Techniques for Spreadsheets.
In Proceedings of the Fundamental Approaches to Software Engineering,
pages 68–82, 2013. 3

[25] Y. T. Hu, M. Burch, and H. van de Wetering. Visualizing dynamic data
with heat triangles. Journal of Visualization, 25(1):15–29, 2022. 2

[26] Y. Huang, Y. Zhou, R. Chen, C. Pan, X. Shu, D. Weng, and Y. Wu.
Interactive Table Synthesis with Natural Language. IEEE Transactions on
Visualization and Computer Graphics, To appear. 2

[27] J. P. Inala and R. Singh. WebRelate: Integrating web data with spread-
sheets using examples. In Proceedings of the ACM on Programming
Languages, pages 1–28, 2017. 2

[28] Z. Jin, M. R. Anderson, M. Cafarella, and H. V. Jagadish. Foofah: Trans-
forming data by example. In Proceedings of the ACM International
Conference on Management of Data, pages 683–698, 2017. 2

[29] S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. van Ham, N. H. Riche, C. E.
Weaver, B. Lee, D. Brodbeck, and P. Buono. Research directions in data
wrangling: Visualizations and transformations for usable and credible data.
Information Visualization, 10(4):271–288, 2011. 1

[30] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interactive
visual specification of data transformation scripts. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages
3363–3372, 2011. 2

[31] S. Kasica, C. Berret, and T. Munzner. Table scraps: An actionable frame-
work for multi-table data wrangling from an artifact study of computational
journalism. IEEE Transactions on Visualization and Computer Graphics,
27(2):957–966, 2021. 2, 3

[32] S. Lau, S. S. Srinivasa Ragavan, K. Milne, T. Barik, and A. Sarkar. TweakIt:
Supporting End-User programmers who transmogrify code. In Proceed-
ings of the CHI Conference on Human Factors in Computing Systems,
pages 1–12, 2021. 2

[33] D. M. Le, H. Lee, K. C. Kang, and L. Keun. Validating Consistency
between a Feature Model and Its Implementation. In Proceedings of the
Safe and Secure Software Reuse, pages 1–16, 2013. 3

[34] J. Lin, J. Wong, J. Nichols, A. Cypher, and T. A. Lau. End-user program-
ming of mashups with vegemite. In Proceedings of the 14th International
Conference on Intelligent User Interfaces, pages 97–106, 2009. 2

[35] S. Liu, D. Peng, H. Zhu, X. Wen, X. Zhang, Z. Zhou, and M. Zhu. Mu-
lUBA: Multi-level visual analytics of user behaviors for improving online
shopping advertising. Journal of Visualization, 24(6):1287–1301, 2021. 2

[36] Z. Liu, S. B. Navathe, and J. T. Stasko. Network-based visual analysis
of tabular data. In Proceedings of IEEE Conference on Visual Analytics
Science and Technology (VAST), pages 41–50, 2011. 2

[37] Z. H. Liu, B. Hammerschmidt, and D. McMahon. JSON data management:
Supporting schema-less development in RDBMS. In Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data,
pages 1247–1258, 2014. 2

[38] M. Z. Malik, J. H. Siddiqui, and S. Khurshid. Constraint-based program
debugging using data structure repair. In Proceedings of the Verification
and Validation Fourth IEEE International Conference on Software Testing,
pages 190–199, 2011. 2, 3

[39] M. Marcozzi, W. Vanhoof, and J.-L. Hainaut. Test input generation for
database programs using relational constraints. In Proceedings of the Fifth
International Workshop on Testing Database Systems, pages 1–6, 2012. 2,
3

[40] H. Mei, H. Guan, C. Xin, X. Wen, and W. Chen. DataV: Data visualization
on large high-resolution displays. Visual Informatics, 4(3):12–23, 2020. 2

[41] F. Mora, M. Berzish, M. Kulczynski, D. Nowotka, and V. Ganesh. Z3str4:
A Multi-armed String Solver. In Proceedings of the Formal Methods,
pages 389–406, 2021. 3, 6

[42] J. Morcos, Z. Abedjan, I. F. Ilyas, M. Ouzzani, P. Papotti, and M. Stone-
braker. DataXFormer: An interactive data transformation tool. In Pro-
ceedings of the ACM SIGMOD International Conference on Management
of Data, pages 883–888, 2015. 2

[43] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and
J. Heer. Formalizing Visualization Design Knowledge as Constraints:
Actionable and Extensible Models in Draco. IEEE Transactions on Visu-
alization and Computer Graphics, 25(1):438–448, 2019. 3

[44] T. Munzner. A Nested Model for Visualization Design and Validation.
IEEE Transactions on Visualization and Computer Graphics, 15(6):921–
928, 2009. 4

[45] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki. Where Do Configuration
Constraints Stem From? An Extraction Approach and an Empirical Study.
IEEE Transactions on Software Engineering, 41(8):820–841, 2015. 3

https://www.microsoft.com/en-us/microsoft-365/excel
https://www.microsoft.com/en-us/microsoft-365/excel

[46] OpenAI. GPT-4. https://openai.com/gpt-4. 6
[47] OpenRefine. Openrefine (previously google refine). https://

openrefine.org/, 2023. (Retrieved: Aug 20th, 2023). 2
[48] M. Paltrinieri. A visual constraint-programming environment. In Proceed-

ings of the Principles and Practice of Constraint Programming, pages
499–514, 1995. 3

[49] T. pandas development team. pandas-dev/pandas: Pandas, Feb. 2020. 2
[50] N. Piccolotto, M. Bögl, T. Gschwandtner, C. Muehlmann, K. Nordhausen,

P. Filzmoser, and S. Miksch. TBSSvis: Visual analytics for Temporal
Blind Source Separation. Visual Informatics, 6(4):51–66, 2022. 3

[51] X. Pu, S. Kross, J. M. Hofman, and D. G. Goldstein. Datamations:
Animated explanations of data analysis pipelines. In Proceedings of
the CHI Conference on Human Factors in Computing Systems, pages
1–14, 2021. 1, 2, 9

[52] Z. Qu and J. Hullman. Keeping Multiple Views Consistent: Constraints,
Validations, and Exceptions in Visualization Authoring. IEEE Trans-
actions on Visualization and Computer Graphics, 24(1):468–477, 2018.
3

[53] T. Rattenbury, J. M. Hellerstein, J. Heer, S. Kandel, and C. Carreras.
Principles of data wrangling: Practical techniques for data preparation.
" O’Reilly Media, Inc.", 2017. 1

[54] S. She, R. Lotufo, T. Berger, A. Wąsowski, and K. Czarnecki. Reverse
engineering feature models. In Proceedings of the 33rd International
Conference on Software Engineering, pages 461–470, 2011. 3

[55] B. Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy for
Information Visualizations. In Proceedings of the IEEE Symposium on
Visual Languages, pages 336–343, 1996. 6

[56] N. Shrestha, T. Barik, and C. Parnin. Unravel: A fluent code explorer for
data wrangling. In Proceedings of the 34th Annual ACM Symposium on
User Interface Software and Technology, pages 198–207, 2021. 2, 7

[57] H. Simonis, P. Davern, J. Feldman, D. Mehta, L. Quesada, and M. Carlsson.
A Generic Visualization Platform for CP. In Proceedings of the Principles
and Practice of Constraint Programming, pages 460–474, 2010. 3

[58] K. Su, J. Zhang, D. Xie, and J. Tao. Importance guided stream surface
generation and feature exploration. Visual Informatics, 7(2):54–63, 2023.
3

[59] C. Sutton, T. Hobson, J. Geddes, and R. Caruana. Data diff: Interpretable,
executable summaries of changes in distributions for data wrangling.
In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2279–2288, 2018. 2

[60] Tableau. Tableau: Business Intelligence and Analytics Software. https:
//www.tableau.com. 2

[61] S. Takahashi. Visualizing constraints in visualization rules. In Proceedings
of the CP2000 Workshop on Analysis and Visualization of Constraint
Programs and Solvers, 2000. 3

[62] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat. Feature
consistency in compile-time-configurable system software: Facing the
linux 10,000 feature problem. In Proceedings of the Sixth Conference on
Computer Systems, pages 47–60, 2011. 3

[63] C. Tominski, G. Andrienko, N. Andrienko, S. Bleisch, S. I. Fabrikant,
E. Mayr, S. Miksch, M. Pohl, and A. Skupin. Toward flexible visual ana-
lytics augmented through smooth display transitions. Visual Informatics,
5(3):28–38, 2021. 2

[64] Trifacta. The Trifacta Data Engineering Cloud. https://www.trifacta.
com/. 2, 3

[65] C. Wang, J. Thompson, and B. Lee. Data formulator: AI-Powered Concept-
Driven Visualization Authoring. IEEE Transactions on Visualization and
Computer Graphics, 30(1):1128–1138, 2024. 2

[66] H. Wickham, M. Averick, J. Bryan, W. Chang, L. D. McGowan,
R. François, G. Grolemund, A. Hayes, L. Henry, J. Hester, M. Kuhn,
T. L. Pedersen, E. Miller, S. M. Bache, K. Müller, J. Ooms, D. Robinson,
D. P. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo, and
H. Yutani. Welcome to the tidyverse. Journal of Open Source Software,
4(43):1686, 2019. 1, 2

[67] K. Xiong, S. Fu, G. Ding, Z. Luo, R. Yu, W. Chen, H. Bao, and Y. Wu. Vi-
sualizing the Scripts of Data Wrangling With Somnus. IEEE Transactions
on Visualization and Computer Graphics, 29(6):2950–2964, 2023. 1, 2, 9

[68] K. Xiong, Z. Luo, S. Fu, Y. Wang, M. Xu, and Y. Wu. Revealing the
Semantics of Data Wrangling Scripts With Comantics. IEEE Transactions
on Visualization and Computer Graphics, 29(1):117–127, 2023. 1, 2, 3, 9

[69] K. Xiong, X. Xu, S. Fu, D. Weng, Y. Wang, and Y. Wu. JsonCurer: Data
Quality Management for JSON Based on an Aggregated Schema. IEEE
Transactions on Visualization and Computer Graphics, 30(6):3008–3021,

2024. 2
[70] C. Yang, S. Zhou, J. L. Guo, and C. Kästner. Subtle bugs everywhere:

Generating documentation for data wrangling code. In Proceedings of
the 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 304–316, 2021. 2

[71] J. Yang, Y. He, and S. Chaudhuri. Auto-pipeline: Synthesize data pipelines
by-target using reinforcement learning and search. Proceedings of the
VLDB Endowment, 14(11):2563–2575, 2021. 2

[72] Y. Ye, J. Hao, Y. Hou, Z. Wang, S. Xiao, Y. Luo, and W. Zeng. Gener-
ative AI for visualization: State of the art and future directions. Visual
Informatics, 8(2):43–66, 2024. 3

[73] X. Zhu, M. A. Nacenta, Ö. Akgün, and D. Zenkovitch. Solvi: A visual
constraint modeling tool. Journal of Computer Languages, 78:101242,
2024. 3

https://openrefine.org/
https://openrefine.org/
https://www.tableau.com
https://www.tableau.com
https://www.trifacta.com/
https://www.trifacta.com/

	Introduction
	Related Work
	Data Wrangling
	Constraints-based Methods

	Table Constraints
	Methodology
	Constraint Types
	Mapping Data Transformations to Table Constraints

	Ferry system
	Requirement Analysis
	System Overview
	Script View
	Constraint Generator

	Constraint View
	Conflict Detector
	Sample Data Generator

	Detail View

	Evaluation
	Usage Scenarios
	Onboarding New Data Into an Existing Script
	Debugging Scripts Generated by LLMs

	Case Studies
	User Interviews
	Example Application

	Discussion
	Conclusion
	Acknowledgments

