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A Deep Spatiotemporal Trajectory Representation
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Abstract—Learning trajectory representations is essential in
many Location Based Services (LBS) applications. Most tra-
ditional methods extract trajectory representations based on
manually defined features, while deep learning-based methods
can reduce part of the human effort. We propose a Deep
Spatiotemporal Trajectory Clustering (DSTC) framework to
tackle the Spatiotemporal Trajectory Representation Learning
towards the Clustering-friendly space (STRLC) problem. Solving
the STRLC problem is not a trivial task because: (1) Defining
a uniform token size for datasets with an uneven density of
trajectory data is challenging. (2) Measuring the similarity
between trajectories spanning time zero in the time dimension
is a problem to be solved. (3) It requires first learning a vector
that can represent the overall characteristics of spatiotemporal
trajectories and then mapping it to a more suitable space
for clustering. To tackle these challenges, we first utilize the
density-based clustering method to define tokens representing the
trajectory points automatically. Then, we use polar coordinates
to represent the temporal dimension of trajectories. Additionally,
we improve the learned trajectory representations in a clustering-
oriented latent space end to end. Experiments conducted on
benchmark datasets demonstrate that DSTC achieves better
accuracy than existing methods. Moreover, the representations
learned from spatiotemporal trajectory data in the real world
can be used to identify popular routes during the day.

Index Terms—trajectory clustering, representation learning,
trajectory feature, trajectory data mining, hot-routes detection.

I. INTRODUCTION

W ITH the rapid development of location-acquisition
technologies like Global Positioning System (GPS)

and wireless mobile devices, spatiotemporal trajectory data
has become easily collected [1]–[3]. Trajectory data is widely
used in many Location Based Services (LBS) applications,
such as understanding human trajectory patterns, preference-
based route planning, and traffic management [4]–[6]. In
recent years, mining travel behavior characteristics of residents
from massive trajectory data have become popular, and some
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related studies in Nature and Science journals have stimulated
research enthusiasm in academics and industry [7], [8].

Trajectory clustering is a primary data-mining method that
aims to divide a set of trajectory objects into multiple clusters
so that objects within a cluster are highly similar to one
another but are dissimilar to objects in other clusters [9],
[10]. Trajectory clustering is the initial and vital step to
reveal the travel behavior patterns of city residents. It proves
highly beneficial in comprehending the spatial distribution
and temporal features of moving patterns in various LBS
application scenarios. For example, clustering algorithms can
be used in analyzing hot routes to identify frequently occurring
routes as research objects [11]. Suppose there are several
alternative routes between two locations, and people tend to
select specific routes in the morning and others during noon. In
that case, these routes appearing at different times can reveal
unique human movement patterns.

Most trajectory clustering methods rely on point-matching
similarity measures to compare trajectories. A common prac-
tice is using similarity measures such as Longest Common
SubSequences (LCSS) [12], Edit Distance on Real sequence
(EDR) [13], and Dynamic Time Warping (DTW) [14] followed
by clustering algorithms like K-Means [15]. With the recent
advances in deep learning, it has become possible to learn
feature representations for complex sequence data, making
it well-suited for analyzing and learning latent representa-
tions of sequential trajectory data. Unfortunately, extracting
features from trajectories that incorporate both temporal and
spatial dimensions, and optimizing such features to be more
suitable for clustering tasks, has received little attention in
the literature, leaving room for improvement in accuracy and
efficiency in trajectory clustering tasks. This lack of attention
is the motivation behind our study on Spatiotemporal Trajec-
tory Representation Learning towards the Clustering-friendly
space (STRLC) problem in order to improve the accuracy of
trajectory clustering.

In addition, conventional trajectory clustering methods pri-
marily focus on measuring trajectories in two-dimensional
space composed of longitude and latitude. Some studies seg-
ment trajectory datasets into several groups based on time
intervals and mining human trajectory patterns separately.
However, a trajectory is not solely a sequence of GPS records
with location attributes and timestamps; it also holds an
absolute value in the temporal dimension. Obtaining prior
knowledge to direct us on partitioning the dataset is challeng-
ing. As shown in Fig. 1, there are four trajectories spanning
different periods. Dividing them by time intervals may result
in some long trajectories being segmented into several short
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Fig. 1. Mapping trajectories in the time dimension.

trajectories. Also, time dimension is cyclical. Time of 23:00
has a stronger resemblance to 1:00 than 20:00. How to
represent time dimension with real numbers to maintain this
cyclicality is also a problem to be solved.

Besides, existing deep learning-based trajectory feature ex-
traction methods usually divide the study area into grids and
map trajectory points to the grids. However, real-life trajectory
datasets often have different densities in different regions,
making choosing an appropriate grid size difficult. As shown
in Fig. 2(a), areas with a dense distribution of trajectory points
may require finer grids, while larger grids can accommodate
areas with sparser trajectories.

Overall, solving the STRLC problem is not a trivial task,
as there are several challenges involved: (1) Defining token
size without prior knowledge is difficult. As trajectory points
in real-world data are unevenly distributed in space, it is
difficult to define a suitable token size that applies to the entire
dataset. (2) It is hard to define spatiotemporal distance between
trajectories due to their temporal nature and occurrence at
specific times during the day. How to represent the time
dimension with real numbers to preserve this periodicity and
further measure the similarity of trajectory data that crosses
zero time is a problem. (3) Designing a unified framework
for learning trajectory representations, mapping them to a
space more suitable for clustering, and obtaining clustering
results end to end is challenging. It requires ensuring that the
trajectory data is distributed evenly around the cluster centers
to achieve higher clustering quality.

To overcome these challenges, we propose a novel Deep
Spatiotemporal Trajectory Clustering (DSTC) framework for
identifying trajectory mobility patterns. We first extract the
representation of trajectories in a three-dimensional spatiotem-
poral space and then improve it by mapping it to a clustering-
friendly latent space. DSTC is designed to consider both
temporal and spatial information of trajectories. This enables
us to learn spatiotemporal trajectory data representations while

obtaining end-to-end clustering results. To our knowledge, this
is the first deep learning-based solution for addressing the
STRLC problem. In summary, this article makes the following
key contributions:

• We present a framework that can learn the representa-
tion of trajectories in a three-dimensional spatiotempo-
ral space with two newly proposed auxiliary clustering
losses. The weights for representation learning and cluster
centroids are updated in the joint training stage, resulting
in mapping the input trajectory data to a space suitable
for clustering.

• When performing representation learning on trajectories,
we consider the non-uniformity of the data density in
the spatial dimension and the periodicity in the temporal
dimension. Not only do we overcome the challenge of
representing trajectories using tokens of a uniform size,
but we also address the issue of small cubes being unable
to represent the continuity of trajectories in the temporal
dimension.

• We introduce two new approaches based on the DSTC
framework: G-DSTC and D-DSTC, and the proposed
algorithms outperform baseline methods on benchmark
datasets. The spatiotemporal trajectory representations
learned from real-world data can be utilized to iden-
tify popular spatiotemporal trajectory routes in a city.
A public spatiotemporal trajectory dataset with ground-
truth labels is also proposed, making up for the lack of
temporal information in existing public spatial trajectory
datasets.

The remainder of this paper is organized as follows. Section
II briefly reviews previous deep spatiotemporal trajectory clus-
tering work. Section III defines the STRLC problem. Section
IV outlines the proposed framework DSTC followed by two
DSTC-based methods. Section V evaluates the effectiveness of
the proposed methods. Section VI summarizes the conclusions
and directions for future research.

II. RELATED WORK

The similarity comparison between trajectories is the basis of
the trajectory clustering methods. In most trajectory clustering
algorithms, point matching methods (such as EDR, DTC, and
LCSS) are initially used to compare the similarity between
trajectories based on artificially designed features (such as
combining trajectory speed, direction, and position) [16],
[17]. The resulting similarities are then utilized in clustering
methods to group similar trajectories. The process heavily
depends on prior human knowledge, and accurately measuring
the similarity between trajectories can be challenging. The
emergence of deep learning provides a promising avenue for
enhancing the accuracy of trajectory similarity measurement
and thus improving the precision of trajectory clustering.

Typically, trajectories are represented as sequences of mul-
tiple grids in two-dimensional space composed of longitude
and latitude, which feature learning models can then process.
These methods can be categorized into two groups: trajectory
representation learning methods based on word embedding and
those based on the pixel. Word embedding-based trajectory
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(a) Grid-based division. (b) Density-based division.

Fig. 2. Division of trajectory points in the spatial dimension.

representation learning methods first convert the original tra-
jectory data into a sequence of multiple words, followed by
vectorizing the words through the word embedding matrix of
a neural network language model. Then, deep learning models
such as recurrent neural networks or autoencoders are used to
learn the complete trajectory representation [18]–[21]. Pixel-
based trajectory representation learning methods consider tra-
jectory points as pixels in an image. This involves converting
the trajectory data into image data and using convolutional
neural networks to learn trajectory features [22], [23]. Word
embedding-based trajectory representation learning methods
can capture the temporal relationship between trajectory points
but may overlook their positional spatial relationship. Pixel-
based trajectory representation learning methods can retain the
spatial positional relationship between trajectory points to a
great extent but may not capture their temporal order. Addi-
tionally, determining the appropriate pixel size is challenging.

Some studies on trajectory feature learning consider the
temporal dimension of trajectories. For example, some studies
extract features from trajectories in space and time dimensions,
then compute a weighted sum of these features to represent the
trajectories [24], [25]. However, since the relative importance
of time and space can differ from one data mining task to
another, it can take time to determine the appropriate balance
between these factors manually. Some methods partition the
study area into multiple spatiotemporal cubic units and then
project trajectories onto these units [26]. Nevertheless, these
methods still face the challenge of determining the optimal
spatiotemporal scale for the cubic units.

Learning representations of trajectories provides an opportu-
nity to gain a deeper understanding of their inherent character-
istics and to classify them more effectively. Trajectory cluster-
ing is a technique used to group a collection of trajectories into
clusters of highly similar objects while dissimilar to objects in
other clusters. In order to enhance the accuracy of trajectory
clustering applications, it is essential to project trajectory
representations into a feature space that is more suitable for
clustering. Traditional clustering techniques often need help
with high-dimensional data because of inefficient similarity
measures and the high computational complexity associated
with processing large-scale datasets. Recent advances in deep

learning have enabled the optimization of high-dimensional
data representations for clustering purposes, often called deep
clustering. Deep clustering is an advanced clustering method
that leverages the powerful representation capabilities of deep
learning to enhance clustering outcomes. It requires the use
of neural networks to not only learn low-dimensional repre-
sentations of data suitable for clustering but also to reflect
the information and structural characteristics of the original
data. Motivated by this, some studies combine representation
learning methods with clustering algorithms. Hierarchical clus-
tering [27] and K-Means [28] clustering are the two most
commonly chosen clustering methods because their recurrent
procedures are suitable for deep learning frameworks. T2VEC
[18] and ST2VEC [26] are two deep learning-based meth-
ods for learning trajectory representations. However, they do
not include a feature mapping stage that would transform
the original representations into a more clustering-friendly
space. DTC [28] and E2DTC [19] are two deep learning-
based methods that learn more clustering-friendly trajectory
representations but do not consider the temporal dimension
when learning these representations. Additionally, they need
to pay more attention to the uneven spatial distribution of real-
life trajectory data.

The studies mentioned above have established a strong foun-
dation for learning spatiotemporal trajectory representations,
but a comprehensive clustering framework for spatiotemporal
trajectories has yet to be developed. None of these methods
address the uneven spatial distribution of trajectory points, and
the clustering loss function design needs to be more complex
and diverse. Compared with the above existing related meth-
ods, the DSTC framework proposed in this article has the
following differences.

• Existing methods lack a framework that can simultane-
ously consider the trajectory representation learning in
both temporal and spatial dimensions. DSTC is a compre-
hensive spatiotemporal trajectory clustering framework
not confined to specific trajectory feature extraction or
clustering techniques. Examples of methods based on the
DSTC framework proposed in this article: G-DSTC and
D-DSTC, are able to extract movement patterns from
three-dimensional spatiotemporal data.
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• The proposed method in this article can overcome tra-
jectory data’s spatial inhomogeneity and time periodicity
problems. It can use tokens of different sizes to adapt
to the trajectory dataset, and also solves the problem
that small cubes cannot represent the continuity of the
trajectory in the time dimension.

• We propose novel loss functions, inter-cluster distance
loss and neighbor loss, extending the possibilities of
clustering loss functions.

III. PROBLEM DEFINITION

This section will define spatiotemporal trajectories and present
the STRLC problem.

Definition 1. (Spatiotemporal Trajectory) The ideal spa-
tiotemporal trajectory is a continuous curve, but the discrete
points are collected in real life. Thus, a spatiotemporal trajec-
tory data can be expressed as a location sequence Ti = {τi, i =
1, 2, ..., n}. Each record τi is a tuple (xi, yi, ti), where: ti is
the timestamp; xi and yi is the location of the trajectory Ti at
time ti.

Definition 2. (Spatiotemporal Trajectory Representation
Learning) Spatiotemporal trajectory representation learning
refers to finding a mapping function f that can convert the
trajectory Ti ∈ O in the original data space into a vector
v ∈ Rd in the d-dimensional space while preserving its
spatiotemporal properties.

Definition 3. (Representation Optimization for Clustering-
Friendly Spaces) With the learned spatiotemporal trajectory
vectors, representation optimization using deep trajectory clus-
tering can train a mapping from the initial representation space
Rd to an optimized, clustering-friendly space R′d. Leveraging
the latter space’s trajectory features can yield higher-quality
clustering results.

Given a spatiotemporal trajectory dataset D = {Ti, 1 <=
i <= n}, the solution to STRLC involves using deep
learning techniques to learn both trajectory representations
V = {Vi, 1 <= i <= n} and cluster centroids C =
{Cj , 1 <= j <= k} simultaneously. Here, n is the number
of trajectories in D, and k is the number of clusters.

Problem Statement. Given a trajectory dataset D, each
trajectory comprises a sequence of points. The goal of the
STRLC problem is to use a mapping function f to con-
vert trajectories from the original data space O into low-
dimensional vectors in an optimized space R′ to improve
clustering accuracy.

IV. THE DSTC FRAMEWORK

This section overviews the DSTC framework and introduces
the detailed methods.

A. Overview

As depicted in Fig. 3, the DSTC framework is based on
the sequence-to-sequence architecture, which consists of three
core parts:

(1) Definition of the spatiotemporal token. Trajectory data
is a type of time series data that contains sequential order
attributes, and its features can be extracted using sequence

Fig. 3. Deep trajectory clustering framework. Trajectory points xt are
converted to spatiotemporal tokens x̄t first and fed into an encoder-decoder
sequence to sequence model to learn initial representations v in the pretraining
step. Finally clustering results and optimized trajectory representations are
generated by minimizing reconstruction loss Lr and clustering loss Lc.

processing methods. Therefore, the representation learning
methods used in Natural Language Processing (NLP) for text
can also be applied to spatiotemporal trajectory data. The
original spatiotemporal trajectory data consists of a series of
spatiotemporal points, which need to be converted into discrete
units similar to tokens in NLP models. Note that the unit
needs to consider both the spatial and temporal dimensions
of the trajectory points. Then, these spatiotemporal units form
a set similar to the vocabulary in NLP tasks. We describe
the method for converting trajectory data points into discrete
tokens in Section IV-B.

(2) Pretraining to obtain the initial spatiotemporal trajectory
representation. The pretraining module applies a deep learning
approach to encode each trajectory through a trained sequence-
to-sequence (Seq2Seq) [29] model. We employ it to extract an
initial spatiotemporal trajectory representation that is robust
and suitable for handling trajectories with non-uniform, low
sampling rates and noisy points. Section IV-C introduces the
details of the pretraining part.

(3) Joint training to optimize representations for improv-
ing clustering quality. The joint training module utilizes the
spatiotemporal trajectory representation obtained from the
pretraining module to map the initial representations into a
new space that is more appropriate for the clustering task.
As a result, we can obtain deep spatiotemporal trajectory
representations suitable for clustering tasks, updated cluster
centers, and trajectory cluster assignments. Section IV-D de-
scribes various loss functions related to clustering.
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Fig. 4. Grid-based divided token representation.

B. Definition of spatiotemporal token

We aim to apply extending from “words” to “sentences” in
natural language feature learning models to spatiotemporal tra-
jectory data. Since trajectories can be considered a sequence of
spatiotemporal points, treating them as tokens in the Seq2Seq
model is a natural choice.

Grid-based divided token. The first method for defin-
ing tokens in spatiotemporal trajectory data is the grid-
based divided token representation method, which treats the
study area as a sizeable spatiotemporal cube. It divides the
study area into multiple small spatiotemporal cubes called
tokenst. As shown in Fig. 4, the study area is divided
into 27 small cubes of equal size, each denoted as tokeni

st,
where i is a unique identifier for each cube. The collection
of all these small cubes can be considered a vocabulary.
The three coordinate axes of each small cube represent the
longitude, latitude, and time dimensions, respectively. For
example, the trajectory point sequence s in Fig. 4 passes
through six small cubic units, which can be expressed as
s = {token6

st, token
12
st , token

24
st , token

21
st , token

20
st , token

19
st }.

Although this method is easy to understand and simple
to implement, it requires determining the size of the small
cube units in advance. If the size of units is too large, the
trajectory will be represented as a sequence of tokens with
lower spatial resolution. On the other hand, if the size of
units is too small, the study area will be divided into too
many tokens, resulting in high training complexity. In real
life, the spatial distribution density of trajectory data is often
uneven, making it difficult to determine an appropriate size
for the small cube units. For instance, human activities are
typically more frequent in commercial and residential areas of
a city, resulting in denser distribution of trajectory points in
these areas. In contrast, the distribution of trajectory points in
suburbs is relatively sparse. To address this issue, we introduce
density-based divided tokens.

Density-based divided token. The second approach to
defining tokens in spatiotemporal trajectory data considers
the inhomogeneity of the spatial distribution of trajectory
data density. We utilize STME [9], a density-based clustering
method, to group trajectory points in spatial dimensions. This

allows us to obtain clusters of varying densities and arbitrary
shapes. As shown in Fig. 2(a), the distribution of trajectory
points in the business district in the upper left corner is
relatively dense, while the distribution of trajectory points in
the lower right corner is comparatively sparse. It indicates
that it may be challenging to determine the optimal grid size
when using a grid-based divided token representation method.
Fig. 2(b) displays the clustering results of trajectory points
in the spatial dimension using the density-based divided token
definition method. The clusters are recorded as C = {CK , i =
1, 2, ...,K}, where K is the number of clusters. The minimum
convex hull of points in a cluster Ci represents the spatial
information of tokenst. This approach divides regions with
dense trajectory points into smaller and refined tokens, while
areas with sparse trajectory points can be divided into larger
tokens.

The periodic representation of the time dimension.
Considering that adjacent time intervals are more likely to
exhibit similar traffic patterns in the transportation field, grid-
based methods may have difficulty accurately measuring the
similarity of trajectory points across time zero. Therefore, we
use polar coordinates to represent the temporal dimension of
trajectories. As depicted in Fig. 5(a), we construct a circle
C centered on (0, 0), where C ⊂ R2. Next, (Rcosθ,Rsinθ)
can be used to represent the time dimension of the trajectory,
where R takes a constant of 1, and θ can be expressed as:

θ =
floor(t/segment)

T/segment
2π (1)

where t represents the time when a trajectory point appears,
segment indicates the time interval into which the overall
period is divided, and T denotes the total duration of the
period. Let us assume the day is divided into 12 parts, with
T being 24 hours and segment being 2 hours. When t is 5
hours, the radian θ of the trajectory point is π

3 . As shown in
Fig. 5(b), this approach can also be extended to other periods,
such as weeks.

C. Pretraining

Using the defined spatiotemporal tokens, the DSTC employs
an encoder-decoder Seq2Seq model to learn a feature repre-
sentation of the entire spatiotemporal trajectory data.

Seq2Seq model. Our Seq2Seq model is composed of an
encoder and a decoder. The encoder transforms trajectories
into low-dimensional trajectory features while the decoder
reconstructs them back into the original trajectory data space.
As illustrated in part 2 of Fig. 3, the encoder reads an input se-
quence sequentially and updates the hidden state accordingly.
This can be formulated as follows:

h
′

t =

{
fencoder(0, x̄t) t = 1

fencoder(h
′

t−1, x̄t) t ≥ 2
(2)

where the hidden state h
′

t at each time is jointly determined
by the hidden state h

′

t−1 at the previous time and the input
x̄t at current time. The final hidden state v produced by the
encoder is a fixed-dimensional vector that can represent the
original data.
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(a) Time period division in weeks. (b) Time period division in days.

Fig. 5. Time period division.

The goal of the decoder is to predict the next symbol y
′

t,
and the hidden state ht can be formulated as

ht =

{
fdecoder(v,BOS) t = 1

fdecoder(ht−1, ȳt−1) t ≥ 2
(3)

where the initial hidden state is mainly determined by the
output vector v, and an BOS is a signal of the begin of a
sequence. Then, the hidden state ht is jointly determined by
the hidden state ht−1 and output ȳt−1 at time t− 1.

Learning trajectory deep representations. We utilize the
Seq2Seq model and maximize the probability of learning
trajectory representations in the latent space based on the
T2VEC [18] method. To generate a distorted trajectory x with
a lower sampling rate, we take the original trajectory in the
dataset as y and apply certain distortions, such as adding
noise or randomly discarding some sampling points. As we
aim to recover high-sampling trajectories from the learned
representations of low-sampling trajectories, the objective of
the pretraining stage is to maximize the conditional probability
P (y|x). That is, to make x as close as possible to the original
trajectory y after encoding and decoding by the autoencoder.
Negative log likelihood loss [30] is used to train the network,
as shown in Eq. 4.

Lr = − logP (y|x) (4)

Teacher forcing technique [31] is also utilized to speed up the
training, thus the input of the decoder is yt, not the last output
of RNN y

′

t−1, as shown in Fig. 3.
By pretraining the network in the above manner, we can

obtain the initial feature representation vector of the spatiotem-
poral trajectory data and the weight of the Seq2Seq model.

D. Joint training with clustering

The quality of data representation significantly impacts the
performance of clustering. We adopt a joint training approach
that combines the clustering process and trajectory representa-
tion learning to achieve higher-quality clustering results. This
is done to transform the data into more clustering-friendly
representations instead of directly using the neural network-
learned representations for clustering.

When combining representation learning and clustering pro-
cesses, their respective loss functions are combined as follows:

L = λLr + (1− λ)Lc (5)

where Lr refers to the reconstruction loss function of the
neural network that learns trajectory representations, Lc refers
to the clustering loss and λ ∈ [0, 1] is a hyper-parameter that
balances Lr and Lc.

Generally, clustering loss can be summarized into two
types: principal clustering loss and auxiliary clustering loss
[32]. The principal clustering loss involves cluster centroids
and cluster assignments, allowing for direct results following
training [33]–[35]. In contrast, the auxiliary clustering loss
does not directly output clustering results, that is, clustering
methods must be run after network training to obtain clustering
results [36], [37]. Auxiliary clustering loss is mainly used for
guiding the network to learn a more feasible representation for
clustering.

We use two main clustering losses, namely K-Means loss
and soft cluster assignment loss, and propose two auxiliary
clustering losses, namely inter-cluster distance loss and neigh-
bor loss.

K-Means loss. The purpose of K-Means loss is to evenly
distribute data samples around the cluster centers [38], defined
as :

Lk(θ) =

N∑
i=1

K∑
k=1

sik ∥ zi − µk ∥2 (6)

where zi is the embedded data sample, µk is the cluster
center, and sik is a Boolean variable that assigns zi to µk. N
represents the size of the dataset, and K refers to the number
of clusters. The K-Means loss helps to improve the cluster
quality of representations by minimizing the distance between
each data point and its assigned cluster center.

Soft cluster assignment loss. Soft cluster assignment loss
uses the Student’s t-distribution as a kernel to measure the sim-
ilarity between sample data and cluster centers [19], defined
as:

qij =
(1 + ∥ zi − µj ∥2/v)−

v+1
2∑

j′
= (1 + ∥ zi − µj′ ∥2/v)−

v+1
2

(7)
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where zi is the trajectory representation, µj is the jth cluster
centroid, and v is a constant. qij can be interpreted as the
probability of assigning trajectory Ti to cluster Cj .

Then, we calculate the target distribution P to make the
probability of cluster distribution more strict. The probabilities
pij in P are calculated as:

pij =
q2ij/

∑
i′ qi′j∑

j′(q
2
ij′/

∑
i′ qi′j′)

(8)

The distribution P forces the assigned values closer to 0 and
1 by squaring the original distribution and then normalizing
it. On the one hand, it improves the purity of clustering by
focusing on sample data with high-confidence assignments.
On the other hand, it prevents large clusters from distorting
the hidden feature space.

Then, the KL divergence can be used to measure the
difference between the distributions P and Q, defined as:

Ls(θ) = KL(P∥Q) =
∑
i

∑
j

= pij log
pij
qij

(9)

Inter-cluster distance loss. Taking into account that the
cluster centroids should not be too close to each other, we
also innovatively introduce the inter-cluster distance loss as
follows:

Ld(θ) =
∑
i

∑
j ̸=i

e−(µi−µj)
2

(10)

where µi and µj represent the representation of cluster centers
ci and cj . This loss aims to ensure that the differences between
clusters are as large as possible.

Neighbor loss. It is assumed that the underlying distribution
of the data follows the assumptions of continuity and cluster-
ing. The continuity assumption posits that data points close to
each other are likelier to belong to the same class [39], [40].
The clustering assumption suggests that data points tend to
aggregate into discrete clusters, with the points in the same
cluster, sharing similar labels [41], [42]. We assume that a
data point has the same label as its k-nearest neighbors within
the same cluster, and we devise a neighbor loss function as
follows:

Ln(θ) =
∑
i

∑
j∈N ′

k(i)

cij(zi − zj)
2 (11)

where N ′
k(i) is the k neighbors of the ith trajectory data, zi

and zj are the representations of the ith and jth trajectories,
and cij ∈ {0, 1} indicates whether two trajectories belong to
the same cluster.

E. Methodology

After identifying a framework of deep spatiotemporal trajec-
tory clustering, creating new and improved methods became
more straightforward. Based on the DSTC framework, we
propose two clustering-oriented spatiotemporal trajectory-to-
vector methods: the G-DSTC (Grid-based Deep Spatiotempo-
ral Trajectory Clustering) method and the D-DSTC (Density-
based Deep Spatiotemporal Trajectory Clustering) method.

These two DSTC-based methods can learn representation
vectors with better clustering results, and cluster assignments
can be obtained at the end of training. The network training for
these methods consists of two phases. The first phase involves
pretraining using a Seq2Seq model with a reconstruction loss.
In the second phase, the reconstruction and clustering losses
are optimized jointly.

V. EXPERIMENTS

In this section, we evaluate DSTC-based methods on four
benchmark datasets with six baseline methods and identify
popular routes in a real dataset during a day. The source code
for DSTC is publicly available here1.

A. Data

We use four benchmark datasets to evaluate our model,
including a simulated dataset and three public spatial datasets.

• Hangzhou Sim2. Since existing public spatial trajectory
datasets with ground-truth labels lack temporal informa-
tion, we created a simulated three-dimensional spatiotem-
poral trajectory dataset. Fig. 6(a) illustrates the spatial
distribution of data within the time range of 23:00-00:30,
which consists of 8,000 trajectories that overlap in both
space and time.

• Geolife 3 dataset is acquired from the paper [19], which
contains 86,113 spatial trajectories within 12 clusters, as
shown in Fig. 6(b).

• Cross 4 dataset [43] has 1,900 spatial trajectories in 19
clusters, simulating a four-way traffic intersection with
multiple through and turn patterns, as shown in Fig. 6(c).

•

• Lab 5 dataset [43] consists of trajectories of humans
walking through a laboratory captured by an omnidirec-
tional camera. This dataset includes 209 spatial trajec-
tories distributed across 15 clusters, as depicted in Fig.
6(d).

Additionally, we collect a taxi-trajectory dataset of May
2020 in Hangzhou, Zhejiang Province, China, denoted as the
dataset Hangzhou. It is obtained from the official site of
the Hangzhou Transportation Bureau. It contains 2,318 taxi
trajectories from Hangzhou East Railway Station to Zhejiang
University Yuquan Campus in Hangzhou City. The geograph-
ical boundaries of this dataset are depicted in Fig. 7(a). We
cluster trajectories and further identify frequently traveled
routes during the day in Hangzhou dataset.

B. Metrics

We evaluate the performance of our algorithms and baseline
algorithms using two widely used clustering metrics: the
Normalized Mutual Information (NMI) [44] and the Adjusted
Rand Index (ARI) [45].

1https://github.com/wangchao5032/DSTC
2https://figshare.com/articles/dataset/dataset D 1/22644973
3https://figshare.com/articles/dataset/Geolife/24798993
4https://figshare.com/articles/dataset/Cross/24798939
5https://figshare.com/articles/dataset/Lab/24798978
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(a) Hangzhou Sim (b) Geolife

(c) Cross (d) Lab

Fig. 6. Benchmark trajectory datasets of Hangzhou Sim, Geolife, Cross, and Lab.

(a) Spatial distribution of Hangzhou dataset. (b) Token distribution of Hangzhou dataset by the D-DSTC method.

Fig. 7. Dataset Hangzhou composed of trajectories from Hangzhou East Railway Station to Zhejiang University Yuquan Campus in Hangzhou City.

NMI. The NMI metric evaluates the information shared
between the predicted clustering labels Ω and ground truth
labels C, defined as:

NMI(Ω, C) =
I(Ω, C)√
H(Ω)H(C)

(12)

where I(Ω, C) denotes the mutual information between pre-
dicted labels and ground truth labels, and H(·) denotes their
entropy. The denominator normalizes the mutual information
to the [0, 1] range.

ARI. The ARI metric is defined as:

ARI =
RI − E[RI]

max(RI)− E[RI]
(13)

where RI is the Rand Index [19] and represents the percentage
of correct predictions, defined as:

RI =
TP + TN

N(N − 1)/2
(14)

where N is the conditional cardinality of the trajectory dataset,
TP is the number of trajectory pairs correctly placed in the
same cluster, and TN is the number of trajectory pairs correctly
placed in different clusters.

C. Baseline Methods

We compare the G-DSTC and D-DSTC methods with six
baseline methods: LCSS, EDR, DTW, T2VEC, ST2VEC, and
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DTC.
• The LCSS algorithm computes the similarity between

trajectories by comparing the distance between two tra-
jectories based on their longest common subsequence
[12], [46].

• The EDR method calculates the similarity between two
trajectories by determining the minimum number of edit-
ing operations necessary to transform one trajectory into
another [13].

• The DTW method dynamically aligns trajectories of
different lengths and then calculates distances, allowing a
sequence to stretch or shrink to match another sequence
better [14], [47].

• T2VEC is the first algorithm to learn trajectory represen-
tation using deep learning methods and achieves excellent
performance [18].

• ST2VEC is a similar trajectory search method for
spatiotemporal deep representation learning based on
T2VEC [26].

• DTC is a deep spatial trajectory clustering approach that
utilizes the K-Means algorithm to cluster trajectories in
the embedded latent feature space [28].

In addition, we also evaluated the impact of G-DSTC
and D-DSTC on experiment outcomes during a pretraining
phase without joint training. We denoted these methods as G-
DSTCpre and D-DSTCpre, respectively.

D. Experiment results

We conduct three sets of experiments to evaluate the efficacy
of the algorithms using the DSTC framework. Firstly, we
compare the performance of the methods proposed in this
paper with other baseline approaches. Secondly, we analyze
the influence of various clustering losses on the outcomes.
Subsequently, we assess the effect of different token definition
methods on the clustering outcomes. We run each algorithm
ten times and calculate the average. We discuss the experiment
results in performance evaluation, clustering loss function
evaluation, and token definition evaluation.

1) Performance evaluation: We first quantitatively evaluate
the G-DSTC and D-DSTC methods and six baseline algo-
rithms using two well-known clustering metrics: NMI and
ARI. Table I displays the NMI and ARI values of the clustering
outcomes for dataset Hangzhou Sim obtained via different
algorithms. The best results are highlighted in bold. The
experiment results indicate that deep learning-based methods
generally outperform traditional point-matching-based meth-
ods. One exception is that T2VEC and DTC methods in
Hangzhou Sim dataset because they only consider the spatial
dimension of trajectory points. The D-DSTC method obtains
the highest NMI and ARI values in three datasets, making
it the most effective method because the learned trajectory
features are more suitable for the clustering task. The superior
clustering results of deep learning-based methods confirm the
effectiveness of utilizing neural networks to extract trajectory
features. The D-DSTC method with density-based divided
tokens outperformed G-DSTC in three out of four datasets. We
believe the main reason is that D-DSTC can set the grid range

automatically and avoid the accuracy loss caused by fixed
grid division and inappropriate grid size. Moreover, D-DSTC
and G-DSTC with joint training stage perform better than G-
DSTCpre and D-DSTCpre with only the pretraining stage in
most datasets, which means the joint training stage can make
the representation of similar trajectories closer to each other.

To visually compare the clustering effects of different
methods, we use the t-SNE (t-distributed stochastic neigh-
bor embedding) method [48] to visualize the learned high-
dimensional trajectory representations in a two-dimensional
map. As shown in Fig. 8, it can be seen that the trajectory
representation vectors in the same cluster obtained by the
D-DSTC method are more tightly clustered together; that is,
the D-DSTC method can accurately distinguish between the
trajectories in clusters.

2) Ablation study on clustering loss functions: In this
experiment, we choose the D-DSTC method as an example to
assess the influence of different clustering loss functions, as
displayed in Table II. We first compare the influence of using
different principal clustering losses on the clustering results.
The first three rows of Table II indicate that combining the
reconstruction loss Lr with the soft cluster assignment loss Ls

yields better results than using only Lr or combining Lr with
the K-Means loss Lk. The comparison result demonstrates
that models trained by aligning the soft assignment with the
target distribution will achieve better clustering outcomes.
Furthermore, we compare the impact of auxiliary clustering
losses on the clustering outcomes. Simultaneously combining
the inter-cluster distance loss Ld and the neighbor loss Ln

produces the best experiment outcome in most datasets. The
DSTC-based methods used in the experiments later in this
paper combine these four clustering loss functions.

3) Evaluation on the token definitions: As the grid size
is a crucial parameter for grid-based trajectory representation
learning methods, we evaluate the clustering outcomes by
G-DSTC on various datasets using diverse spatial division
sizes. In contrast, the D-DSTC method does not require
specifying the token size since it uses the density-based
clustering method to cluster the trajectory points to create
varying-sized tokens. As illustrated in Table III, the D-DSTC
method achieves superior outcomes with the highest NMI and
ARI on datasets Hangzhou Sim and Lab. Although the G-
DSTC method achieves better results on datasets Geolife and
Cross, a token size of 300 meters performs best on dataset
Geolife, whereas a token size of 100 meters is more suitable
for dataset Cross. Besides, dataset Lab comprises trajectory
data of indoor human walking. Given the small area of the
research region and the limited camera recording range, the
G-DSTC method with sizes of 300 meters and 500 meters
only generates one token, which cannot differentiate between
different trajectories. It indicates that trajectory datasets with
distinct data distributions need tokens with varying spatial
sizes to obtain optimal outcomes, implying that tokens of the
same size cannot accommodate all data distributions. Even
though the D-DSTC method does not achieve the best results
on datasets Geolife and Cross, the ARI and NMI metrics are
only marginally inferior to the optimal outcomes of the G-
DSTC model.
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TABLE I
COMPARISON OF CLUSTERING RESULTS BETWEEN DIFFERENT METHODS.

Type Method Hangzhou Sim Geolife Cross Lab
ARI NMI ARI NMI ARI NMI ARI NMI

Point-matching-based methods
EDR 0.6319 0.8355 0.4312 0.6632 0.2730 0.6399 0.4210 0.6690
LCSS 0.6496 0.8452 0.5662 0.7846 0.4943 0.7374 0.6797 0.8270
DTW 0.6814 0.8774 0.6037 0.8184 0.7016 0.8961 0.6578 0.8126

Deep learning-based methods
T2VEC 0.4732 0.7074 0.7447 0.8218 0.8566 0.9391 0.6904 0.8366

ST2VEC 0.9027 0.9546 0.4868 0.6872 0.7549 0.9065 0.4935 0.7312
DTC 0.4798 0.7088 0.8859 0.9268 0.8758 0.9457 0.6858 0.8405

DTSC-based methods

G-DSTCpre 0.9641 0.9859 0.8641 0.9805 0.8621 0.9406 0.6817 0.8314
G-DSTC 0.9494 0.9799 0.8917 0.9248 0.8729 0.9422 0.6853 0.8357

D-DSTCpre 0.9690 0.9867 0.8492 0.8992 0.8549 0.9298 0.6628 0.8412
D-DSTC 0.9787 0.9910 0.8730 0.9160 0.8899 0.9471 0.6956 0.8506

(a) T2VEC (b) ST2VEC (c) DTC

(d) G-DSTC (e) D-DSTC

Fig. 8. t-distributed stochastic neighbor embedding visualization of clustering results of T2VEC, ST2VEC, DTC, G-DSTC and D-DSTC algorithms on
Hangzhou Sim.

Next, we visually compare the size and distribution of
tokens generated by the G-DSTC and D-DSTC methods on
dataset Hangzhou Sim. Fig. 9(a) depicts the spatial distribu-
tion of the dataset where distinct colors differentiate trajec-
tories of diverse shapes. We visualize the token distribution
of Hangzhou Sim using the D-DSTC and G-DSTC methods
with token sizes set to 100 meters and 500 meters, respectively.
Areas A and B, marked by red and blue rectangles, denote
specific regions of interest for subsequent critical research. Fig.
9(b)-(d) display partially enlarged views of area A, where the
irregular block represents the minimum circumscribed convex
hull of all trajectory points within the original square token.
The darker the color of the distinct blocks, the greater the
number of trajectory points within the token. Due to the
relatively close distance between the two trajectory routes in
area A, it is challenging for the G-DSTC method with a token

size of 500 meters to differentiate them. In contrast, the D-
DSTC method and the G-DSTC approach with a token size
of 100 meters exhibit superior differentiation ability. Fig. 9(e)-
(g) display partially enlarged views of area B, where all three
methods can differentiate between the two trajectory routes.
The observations above suggest that the grid-based approach
is not robust. In addition, while the G-DSTC method with a
token size of 100 meters can effectively differentiate between
the trajectory routes in areas A and B, the fine-grained division
significantly increases the number of tokens, which decreases
the model’s training speed. In contrast, the D-DSTC method
can readily adapt to trajectory data with various distributions
and obtain an optimal number of tokens.

4) Case study: Fig. 7(a) shows the spatial distribution of
dataset Hangzhou composed of trajectories from Hangzhou
East Railway Station to Zhejiang University Yuquan Campus
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TABLE II
ABLATION STUDY OF D-DSTC WITH DIFFERENT KINDS OF CLUSTERING LOSS.

Ablation Setting Hangzhou Sim Geolife Cross Lab
Lr Lk Ls Ld Ln ARI NMI ARI NMI ARI NMI ARI NMI
✓ × × × × 0.9690 0.9867 0.7026 0.7997 0.8549 0.9298 0.6628 0.8412
✓ ✓ × × × 0.9619 0.9885 0.8079 0.8800 0.8587 0.9330 0.6784 0.8421
✓ × ✓ × × 0.9751 0.9901 0.8299 0.8953 0.8688 0.9355 0.6809 0.8503
✓ × ✓ ✓ × 0.9700 0.9910 0.8496 0.9086 0.8722 0.9379 0.6849 0.8514
✓ × ✓ × ✓ 0.9706 0.9862 0.8059 0.8656 0.8706 0.9379 0.6884 0.8480
✓ × ✓ ✓ ✓ 0.9787 0.9910 0.8503 0.9010 0.8899 0.9471 0.6956 0.8506

TABLE III
IMPACT OF VARYING GRID SIZES ON THE DSTC-BASED METHODS.

Method Grid Hangzhou Sim Geolife Cross Lab
Size(meter) #Token ARI NMI #Token ARI NMI #Token ARI NMI #Token ARI NMI

G-DSTC

4 208,697 0.0716 0.2487 400003 0.2729 0.3936 8232 0.7049 0.8575 847 0.6853 0.8357
100 20,355 0.9134 0.9650 15195 0.6685 0.8011 32 0.8729 0.9422 11 0.6399 0.8265
300 4,575 0.9494 0.9799 2763 0.9557 0.9625 9 0.6066 0.8449 1 - -
500 2,380 0.9136 0.9656 1309 0.8917 0.9248 7 0.1357 0.5995 1 - -

D-DSTC - 17,430 0.9787 0.9910 1993 0.9138 0.9331 25 0.8245 0.9274 44 0.7506 0.8767

TABLE IV
HOT ROUTE STATISTICS OF DATASET HANGZHOU.

Route #Trajectories on weekends #Trajectories on weekdays Average time duration (min) Average length (km)
1 28 73 22.4721 11.4304
2 5 13 28.8167 12.6278
3 10 17 24.2875 12.0569

in Hangzhou City. As it is challenging to identify hot routes
directly from the raw data, we utilize the D-DSTC method to
find the most popular driving routes at different time intervals.
Fig. 7(b) shows the spatial distribution of the tokens generated
by the D-DSTC method. To simplify the analysis, we select
the 10 percent of data closest to the cluster center in each
cluster as the research object. Fig. 10 displays the three most
frequent routes: Route 1, Route 2, and Route 3. As shown
in Table IV, Route 1 is the most frequently selected route
from Hangzhou East Railway Station to Zhejiang University’s
Yuquan Campus, as it has a shorter driving distance and takes
less time to reach the destination. Compared to Route 2, Route
3 is chosen more often due to its shorter travel distance and
time.

Fig. 11 displays the trajectories of the three routes during
different time intervals. As illustrated in Fig. 11(a)-(c), during
the time interval of 19:30-20:00, drivers tend to choose the
trajectories of Route 1 and Route 2, while they lean towards
selecting Route 3 between 20:00-20:30. As shown in Fig.
11(d)-(f), during 17:20-18:30, drivers tend to choose Route 1
and Route 3. It may be because this period coincides with the
peak of rush hour when drivers prefer shorter driving distances
and times.

VI. CONCLUSIONS AND FUTURE STUDIES

This paper presented a Deep Spatiotemporal Trajectory Clus-
tering framework (DSTC) to address the Spatiotemporal
Trajectory Representation Learning towards the Clustering-
friendly space (STRLC) problem, which involves learning
representations of spatiotemporal trajectories and utilizing

them for clustering tasks. Subsequently, we developed two
specific methods, D-DSTC and G-DSTC, based on the DSTC
framework. In particular, the D-DSTC method considers the
non-uniformity in the spatial dimension and periodicity in the
temporal dimension of the trajectory data. Moreover, the hot
routes discovered in the real-world dataset can reveal human
travel habits. In the future, we plan to implement more method
instances based on the DSTC framework to discover more
exciting patterns from large-scale real-world spatiotemporal
trajectory datasets.
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(a) The spatial distribution of the dataset Hangzhou Sim.

(b) Area A is divided into tokens of
100 meters by G-DSTC.

(c) Area A is divided into tokens of
500 meters by G-DSTC.

(d) Area A is divided into tokens by
D-DSTC.

(e) Area B is divided into tokens of
100 meters by G-DSTC.

(f) Area B is divided into tokens of
500 meters by G-DSTC.

(g) Area B is divided into tokens by
D-DSTC.

Fig. 9. Illustration of the spatial division of the dataset Hangzhou Sim.

(a) Route 1 (b) Route 2 (c) Route 3

Fig. 10. Hot routes of dataset Hangzhou.
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(a) Hot routes of latitude-longitude
distribution in 19:30-20:30.

(b) Hot routes of longitude-time
distribution in 19:30-20:30.

(c) Hot routes of latitude-time
distribution in 19:30-20:30.

(d) Hot routes of latitude-longitude
distribution in 17:20-18:30.

(e) Hot routes of longitude-time
distribution in 17:20-18:30.

(f) Hot routes of latitude-time
distribution in 17:20-18:30.

Fig. 11. The latitude-longitude, longitude-time distribution, and latitude-time distribution for the three routes during different periods are presented in (a)-(c)
for 19:30 to 20:30 and (d)-(f) for 17:20 to 18:30.
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