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Towards Better Detection and Analysis of
Massive Spatiotemporal Correlation Patterns

Yingcai Wu, Di Weng, Zikun Deng, Jie Bao, Zhangye Wang, Yu Zheng, and Wei Chen

Abstract—With the rapid development of sensing technologies,
massive spatiotemporal data have been acquired from the urban
space with respect to different domains, such as transportation
and environment. Numerous correlation patterns (e.g., traffic
speed < 10km/h, weather = foggy, and air quality = unhealthy)
between the transportation data and other types of data can
be obtained with given spatiotemporal constraints (e.g., within
3 kilometers and lasting for 2 hours) from these heterogeneous
data sources. Such patterns present valuable implications for
many urban applications, such as traffic management, pollu-
tion diagnosis, and transportation planning. However, extracting
and understanding these patterns is beyond manual capability
because of the scale, diversity, and heterogeneity of the data.
To address this issue, a novel visual analytics system called
CorVizor is proposed to identify and interpret these correlation
patterns. CorVizor comprises two major components. The first
component is a correlation mining framework involving three
steps, namely, spatiotemporal indexing, co-occurring instance
generation, and pattern mining. The second component is a
visualization technique called CorView that implements a level-
of-detail mechanism by integrating tailored visualizations to
depict the extracted spatiotemporal correlations. Case studies and
expert interviews are conducted to demonstrate the effectiveness
of CorVizor.

Index Terms—Heteorgeneous urban data, spatiotemporal data
visualization, correlation pattern analysis.

I. INTRODUCTION

THE rapid development of sensing technologies has re-
sulted in a large amount of heterogeneous urban data

acquired from different data sources, such as traffic and
air quality data. These data inherently comprise numerous
interesting correlation patterns, i.e., the combinations of the
property value ranges that frequently co-occur with each other.
These patterns appear frequently within a spatial range and a
temporal window and may comprise properties from various
data sources. For example, given three data sources, namely,
transportation, weather, and air quality, and spatiotemporal
constraints (within 3-kilometer range and 2-hour window), a
fine-grained correlation pattern like {20 < TrafficVolume <
30, 100m/s < WindSpeed < 150m/s, AirQuality =
healthy} may be identified. These fine-grained patterns reveal
important spatiotemporal insights and anomalies (i.e., coun-
terintuitive correlation patterns) across multiple data sources
that support numerous urban decision-making applications,
including traffic management and transportation planning.

Yingcai Wu, Di Weng, Zikun Deng, Zhangye Wang, and Wei Chen are
with the State Key Lab of CAD&CG, Zhejiang University. E-mail: {ycwu,
dweng, zikun rain}@zju.edu.cn, {zywang, chenwei}@cad.zju.edu.cn.

Jie Bao and Yu Zheng are with Urban Computing Business Unit, JD
Finance. E-mail: baojie1985@gmail.com, msyuzheng@outlook.com.

Manuscript received April 19, 2005; revised August 26, 2015.

However, neither have such correlation patterns been sys-
tematically studied and detected, nor effectively interpreted
and understood. Two challenges arise from the identification
and interpretation of these patterns: a) efficient extraction and
b) interactive visualization.

Efficient extraction of the correlation patterns is consider-
ably difficult, particularly from the heterogeneous urban data
sources that comprise various properties, such as PM2.5 and
PM10 in air quality data and temperature and humidity in me-
teorological data. Without an efficient approach, exhaustively
testing all possible combinations of these properties to find
the potential patterns will result in poor computational perfor-
mance as the number of properties increases. Furthermore,
the aforementioned patterns are fine-grained on continuous
value domains and may involve both categorical and numerical
properties. However, most of the traditional correlation mining
techniques, such as Apriori [1], [2], are specifically designed
to detect the coarse association rules (i.e., correlation patterns),
such as {butter, bread} ⇒ {milk}, among categorical
attributes only. Some recent techniques [23], [49] that extract
patterns from numerical data generally require the continuous
domains of property values to be initially discretized, thereby
resulting in the severe loss of latent patterns.

The extracted correlation patterns also require a well-
designed visualization technique, with which domain experts
can examine these correlations, identify spatiotemporal trends,
and study correlation anomalies. However, it is difficult to
develop an appropriate technique that visualizes these patterns
because of three identified design challenges: a) diversity: the
data properties involved in the visualized correlation patterns
may have different types, scales, and semantics; b) volume:
numerous patterns with overlapping value ranges can be
extracted from heterogeneous urban data; c) organization: a
combination of properties can be shared by many patterns,
thereby forming a two-level hierarchical structure where the
designed visualizations should enable experts to explore the
hierarchy flexibly and efficiently. To the best of our knowledge,
none of the existing visualization approaches, including paral-
lel coordinates and parallel sets [24], can be applied directly to
address these challenges, which demand a set of considerate
visualizations specifically tailored on the basis of the unique
characteristics of the extracted patterns.

In this study, we develop a novel data mining model that
extracts correlation patterns efficiently based on three main
modules: a) spatiotemporal indexing that builds a unified
index structure to accelerate the following mining process, b)
co-occurring instance generation that identifies co-occurring
instances and builds a pruning graph to reduce the search
space of patterns, and c) pattern mining that aggregates the
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data by using value matrices and extracts distinct patterns
via an efficient sweep-line algorithm. We also propose a
new matrix-based visualization technique named CorView,
which effectively depicts the extracted patterns that comprise
properties of different data types, scales, and semantics in an
aligned fashion. Particularly, we address the scalability issue
by adopting a level-of-detail mechanism that integrates brick-
like glyphs, scatterplots, parallel coordinates, and a stacked
line chart. Furthermore, we design CorVizor, a novel visual
analytics system that helps users reliably detect and analyze
the correlation patterns in cross-domain urban data. The major
contributions of this study are as follows.
⋄ We characterize the problem of identifying and interpret-

ing fine-grained spatiotemporal correlations among cross-
domain urban data sources;

⋄ We formulate an efficient framework that extracts the cor-
relation patterns from heterogeneous spatiotemporal data
based on three main modules;

⋄ We design CorView, a multi-scale visual representation for
depicting the massive patterns that comprise properties of
different types, scales, and semantics;

⋄ We develop CorVizor, a visual analytics system that as-
sists experts in exploring, interpreting, and analyzing the
extracted correlation patterns effectively.

II. RELATED WORK

This section discusses related studies in the following three
parts, namely, correlation pattern mining, spatiotemporal visu-
alization, and correlation visualization.

A. Correlation Pattern Mining
Correlation pattern mining (i.e. association analysis) tech-

niques aims to identify interesting correlations among categor-
ical or numerical data properties.

Traditional techniques like Apriori [1], [2] and PrefixS-
pan [3] attempt to extract the patterns from transactional data-
sets and thus were limited to handling categorical data. Similar
methods have been adapted to transactional urban datasets,
where the extraction of correlation patterns from the moving
object [10], boolean [34], [55], and event [7], [29], [36]
datasets in spatiotemporal contexts were extensively studied.
However, these techniques cannot be directly applied to solve
our problem since most of the properties like traffic speed and
volume in heterogeneous urban data have continuous domains.

Techniques [23], [38], [49] were also proposed to handle
numerical data by dividing the continuous domains of proper-
ties into a number of bins. However, such discretization may
lead to the severe loss of latent patterns. Other studies have
attempted to avoid the discretization with topological methods
in spatiotemporal contexts. Chirigati et al. [14] developed a
topology-based method named data polygamy. This method
efficiently extracts the relationships between extrema in urban
datasets. Nonetheless, it can only identify the correlations that
comprise the peaks or valleys of data properties.

We define correlation patterns as the flexible value range
combinations of both numerical and categorical properties in
heterogeneous urban datasets. Without the discretization of
domains, our model has finer granularity and extracts the
patterns more reliably than those models in the prior studies.

B. Spatiotemporal Visualization
The rapid development of smart cities enables authorities

to collect citywide spatiotemporal data via sensors more
efficiently than ever, making data-driven solutions possible for
urbanization problems like air pollution and traffic conges-
tions. To integrate human in the analysis loop, spatiotemporal
data visualization has been investigated and applied in many
settings, such as billboard location selection [27], public utility
analysis [54], and hotspot prediction [30]. Andrienko et al. [4]
provided an excellent taxonomy of existing spatiotemporal
visualization methods for movement data, which are classified
into three categories, namely, direct depiction (e.g. points [19],
polylines [5], stacked bands [44], and space-time cubes [6]),
summarization (e.g. density maps [40], [50], graphs [45], and
flow maps [20]), and pattern extraction [12], [22], [52]. Sun
et al. [42] also explored the better integration of temporal
information in spatial contexts by transforming maps. To
handle large-scale spatiotemporal data, many novel methods
have been incorporated into visualizations, such as tailored
query model [19], topological methods [16], [33], uncertainty
analysis [12], and anomaly detection [9]. However, most of
the prior studies focus on single-source data only, including
trajectory [39], cellphone [52], [56], and weather data [37]. In
contrast, our study targets at visualizing multi-source hetero-
geneous data, which poses difficult design challenges arisen
from the unique characteristics of correlation patterns.

This work establishes a pattern extraction method that
aims to detect and visualize an extensive number of fine-
grained correlation patterns among heterogeneous datasets. In
particular, various types of urban data from multiple domains
were analyzed and explored through a mining model and a set
of tailored visualization techniques.

C. Correlation Visualization
Visually understanding and analyzing the massive extracted

correlation patterns remain a difficult and challenging task.
Many correlation visualization methods targeting categorical
data have been proposed based on scalable techniques like
2D plots [26], [28], graphs [17], parallel coordinates [53],
and matrices [21], [51]. For numerical datasets, Bothorel et
al. [8] proposed a visual mining pipeline based on the Apriori
algorithm, yet the value ranges must be discretized.

Recently, the visual analysis of spatiotemporal correlations
has attracted wide research interests. Qu et al. [37] studied
the visualization of the correlations between various weather
attributes. TelCoVis [52] was designed to illustrate the human
co-occurrence patterns with mobile phone data. Furthermore,
a few studies have considered the complex correlation pat-
terns among multiple data sources. Urbane [18] combines
datasets from diverse domains for target building selection.
VAUD [13] allows users to explore cross-domain correlations
based on visual query and reasoning. COPE [25] detects
various co-occurrence patterns of spatiotemporal events via a
well-designed visual interface. However, most of these visual-
ization techniques neither integrate with an automated mining
model nor involve the correlation patterns characterized by
combinations of continuous value ranges and categorical sets.
Thus, finding and interpreting interesting patterns will become
increasingly difficult with the growing size of datasets.
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TABLE I: Properties of three data sources.

Data Source Property Value Range

Air Quality

PM 2.5, PM 10 (ug/m3)1 [0, 500]
O3 (ug/m3) [0, 2300]
NO2 (ug/m3) [0, 300]
CO (ug/m3) [0, 70]
SO2 (ug/m3) [0, 150]
AQI Level 6 levels

Weather

Temperature ◦C [-20, 40]
Humidity [0, 100]
Wind Speed (m/s) [0, 300]
Wind Direction [1, 24]
Cloud Conditions 14 conditions

Traffic

Total Cars [9, 200]
Low Speed (0− 20 km/h) % [6, 80]
Medium Speed ( 20−50 km/h) % [17, 74]
High Speed (above 50 km/h) % [0, 53]

1 PM 2.5 is particulate matter 2.5 micrometers or less in diameter; PM 10 is particulate
matter 10 micrometers or less in diameter.

In this paper, we design a novel analytics system that
combines several interactive visualizations specifically tailored
for the massive fine-grained correlation patterns extracted by
the proposed model in spatiotemporal contexts.

III. BACKGROUND AND SYSTEM OVERVIEW

This section presents the background, problem, and over-
view of the proposed system.

A. Background

Our study mainly focuses on extracting, visualizing, and
evaluating frequent spatiotemporal patterns obtained from het-
erogeneous urban data. We introduce the following terminolo-
gies in the extraction of spatiotemporal correlation patterns.
For each annotation, the superscript is used to distinguish
different objects, and the subscript is to indicate the association
of the current object.
⋄ Data Source: A data source s ∈ S = {s1, s2, ..., sn}

comprises a set of spatial locations {l1, l2, ...} ∈ L, each
of which is associated with a set of time-varying properties
{p1, p2, ...} observed at the location. The data sources used
in this study are shown in Table I with their detailed
properties.

⋄ Instance: An instance φ, associated with a data source s,
comprises a spatial location l, a time point t, and a value
vp of property p observed at time t and location l.

⋄ Property Value Range: We denote a specific value range
of property p of data source s with sp|C. The range C can
be either numeric (e.g. [5, 8]) or ordinal (e.g. {cloudy}),
depending on the type of property p. An instance φ satisfies
a property value range sp|C iff (1) φ is collected from the
property p and (2) the observed value vp of property p is
within the range of C, namely, vp ∈ C.

⋄ Co-occurrence of Instances: Instances are co-occurring
with each other iff they co-occur within the user-specified
spatial and temporal thresholds. Fig. 1(a) shows an example
of five instances φ2

sτ , φ1
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sα , φ1
sβ , and φ2

sβ of data
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Fig. 1: (a) Co-occurring instances and (b) examples of co-
occurring property value ranges.

⋄ Co-occurrence of Property Value Range: By extracting
co-occuring instances, the co-occurrences of the property
value ranges constituted by the values of these instances
can be obtained. Fig. 1(b) shows an example of the co-
occurring value ranges of the properties in data sources sα

and sβ w.r.t. data source sτ .
⋄ Correlation of Property Value Ranges: Value ranges of

different properties are correlated iff there exists a sufficient
number of co-occurring instances, each of which satisfies
its corresponding property value range. The sufficiency is
determined by the correlation coverage introduced below.

⋄ Correlation Coverage: Regarding sτ as the target data
source of a given correlation of property value ranges which
involves one and only one property in sτ , we compute
the correlation coverage λ as the number of correlated
instance combinations involving sτ divided by the number
of instances of sτ (denoted by |sτ |).

⋄ Frequent Spatiotemporal Pattern: With respect to target
data source sτ , a frequent spatiotemporal pattern is a
set of correlated property value ranges, and the correla-
tion coverage λ based on sτ is larger than the thresh-
old specified by the user. A pattern is denoted with
{sτpu |C, {sαpx |C, sβpy |C, ...}}, where sτ , sα, and sβ are cor-
related data sources, pu, px, and py are data properties, and
sτpu |C, sαpx |C, and sβpy |C are correlated property value ranges.
We developed optimization techniques to remove redundant
patterns by maximizing the correlation coverage.

B. Problem Definition

Given target data source sτ , a group of cross-domain data
sources S = {s1, s2, ..., sn}, and a set of mining parameters,
including spatial distance d, temporal window t, and a user
specified threshold λe (i.e., a desired correlation coverage
value), a set of frequent spatiotemporal correlation patterns are
identified with the likelihood of occurrence (i.e., correlation
coverage λ) being larger than λe from S, that is, λ > λe. We
denote the identified patterns as {sτpu |C, {sαpx |C, sβpy |C, ...}}.
The objective is to identify all distinctive spatiotemporal
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Fig. 2: Overview of the mining framework.

patterns by efficient correlation mining and comprehend the
patterns through interactive visualization.

C. System Overview

We develop CorVizor, a web-based visual analytics system
that can assist urban experts in interpreting and analyzing
patterns extracted from heterogeneous urban data. CorVizor
comprises two components: data mining and interactive visu-
alization. The mining component, which is implemented in C#,
indexes heterogeneous spatiotemporal data, extracts co-related
instances, and performs pattern mining, thereby transforming
raw data into interpretable patterns. The visualization compo-
nent, which is implemented in TypeScript, visualizes patterns
with four tailored views, enabling users to interactively filter,
compare, and evaluate patterns across multiple data sources.

IV. MINING FRAMEWORK

Detecting fine-grained correlation patterns from heteroge-
neous urban data sources is difficult because spatiotemporal
urban data generally do not have transactions. Moreover,
diverse data sources possess dissimilar value scales, including
the scales of numeric and categorical values. Furthermore,
the correlation patterns characterized by combinations of con-
tinuous value ranges and categorical sets can easily lead to
the exponential size of possible correlation patterns. Given
these issues, traditional mining techniques, such as Apriori
[2], cannot be applied directly. Thus, we propose a mining
framework with these three modules (Fig. 2) to tackle the
challenges: (1) indexing spatiotemporal data with a nested
data structure to ensure the efficiency of the subsequent mining
process, (2) generating co-occurring instances by identifying
these instances with unified indexes and pruning the impossi-
bly co-occurring instances, and (3) mining frequent patterns
with a novel sweep-line algorithm based on the value matrices
constructed from instances.

A. Indexing Spatiotemporal Data
At this stage, we build a unified index [11], [15], [47] for

large-scale heterogeneous spatiotemporal data (Fig. 2(a)) to
enable faster data retrieval with different mining parameters
specified and accelerate the subsequent mining stages. To
construct the index, we divide the map into n × m spatial
grids, each of which has an area of 1 × 1 km2. Each grid
maintains the covered instances with a temporal index, where
the instances are organized by their timestamps with a B+ tree.
Each leaf node of the B+ tree records the ID, data source ID,
GPS location, and timestamp of an instance.

B. Generating Co-occurring Instances
Using the target data source sτ , spatial threshold d, temporal

threshold t, and expected correlation coverage λe, the pro-
posed mining framework attempts to extract co-occurring in-
stances with co-occurrence tables and pruning graphs (Fig. 3)
from the spatiotemporal index built at the previous stage.

First, range queries based on the spatial and temporal
thresholds are issued for each instance of target data source sτ

to identify co-occurring instances within the same property of
the target data source or in other data sources. Based on the
given spatial distance and temporal range, the co-occurring
instances (Fig. 3(a)) in a spatiotemporal cylinder of each
instance in st (Fig. 2(b)) are organized into a co-occurrence
table (Fig. 3(b)) by the instances in st. Additionally, the
values of the co-occurring instances associated with the same
property are aggregated and represented with a value range.

Next, a pruning graph (Fig. 3(c)) is created to characterize
all combinations of the data sources associated with the
detected co-occurring instances, such that impossible com-
binations are pruned at the data source level. The basic
idea is that no frequent spatiotemporal patterns of two data
sources is present if no sufficient co-occurring instances are
found from the two data sources. Each node represents a
potential combination of data sources with (1) the IDs of
the involved data sources, (2) a list of the co-occurring
instances of the involved data sources, and (3) a counter storing
the number of the co-occurring instances. For example, the
node labeled {SαSβ , 3} in Fig. 3(c) indicates that three co-
occurring instances can be extracted from the data sources Sα,
Sβ , and Sτ . Links between the nodes depict downward closure
relations [1], i.e., an upper-level node contains all the instances
of its linked lower-level nodes. Therefore, the insignificant
combinations of data sources can be quickly detected and
invalidated from the top to the bottom at this stage, by
removing the nodes whose number of associated co-occurring
instances is lower than the specified threshold (λe · |T |, as per
the definition of correlation coverage), as illustrated with gray
nodes in Fig. 3(c). Corresponding rows in the co-occurrence
table are removed thereafter. Hence, the property combinations
belonging to invalid data source combinations are eliminated,
thereby accelerating the subsequent pattern mining stages.

C. Mining Frequent Patterns
We propose a two-fold approach to extract frequent patterns

from the co-occurrence table and pruning graph. This approach
comprises two steps: (1) Low-Level Pattern Mining entails
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identifying low-level patterns that comprise correlated value
ranges between the properties of target data source sτ and
another data source and (2) High-Level Pattern Mining in-
volves identifying high-level patterns that comprise correlated
property value ranges across multiple data sources.

1) Low-level Pattern Mining: Low-level pattern mining
aims to find significant combinations of correlated value
ranges between a property in the target data source sτ and
one in another data source by a) aggregating the co-occurring
property value ranges discovered at the previous stage with
value matrices and b) performing a novel sweep-line based
algorithm on the value matrices to identify salient correlated
property value ranges that satisfy the given threshold λa.

Range Aggregation. We first enumerate every possible pair
of properties. Then, we aggregate all combinations of co-
occurring property value ranges (which we have discovered
at the previous step) between two properties in each pair. The
aggregation is achieved with a value matrix (Fig. 2(c)). Axes
of the value matrix represent the categorical or discretized
numerical domains of properties px and py , while each cell
(i, j) in the matrix denotes a property value combination of
vpx = i and vpy = j. We overlay the combinations of
co-occurring property value ranges extracted from the co-
occurrence table (rectangles in Fig. 2(d)) on the value matrix
and maintain the combination and instance counts collected
from the covered range combinations for each cell.
Pattern Identification. Given a value matrix, salient patterns
appear as the rectangular areas on the matrix in which the
instance count of every cell covered by the area is larger than
λe · |sτ |, whereλe means a user-desired correlation coverage
and |sτ | represents the number of instances of sτ . To detect
these areas, we develop a fast algorithm based on the sweep
line (Alg. 1). Specifically, we sweep the domain of a property
column by column and construct rectangular areas along the
way. For each column, the algorithm detects vertically con-
tinuous sweep windows (cf. L3) in which every cell satisfies
the constraint and maintains two states, namely, ASW for the
active sweep windows detected in the previous column and
NSW for the new ones detected in the current column. To
replace ASW with NSW, the algorithm considers three cases:

⋄ Case 1: Continued. A sweep window in ASW entirely
continues in NSW , thereby remaining active (cf. L5-6).

⋄ Case 2: Discontinued. A sweep window in ASW com-
pletely disappears in NSW , thereby being removed from
ASW . A new rectangular area will be constructed from the
swept area and inserted into the result set RS (cf. L7-9).

⋄ Case 3: Partially continued. A sweep window in ASW

Algorithm 1: Sweep-line Pattern Mining Algorithm
Data: Value Matrix VM , desired coverage coverage λe.
Result: The result set RS with maximal rectangles in the

matrix.
1 ASW ← ∅, NSW ← ∅ ;
2 for Each column col in VM do
3 NSW ← continuous qualified (satisfying λ > λe) cells

in col ;
4 for sweep window sw ∈ ASW do
5 if sw continues in col then
6 keep sw in ASW ; /* cont’d */
7 else if sweep window sw not continue in col then
8 RS ← result(sw and col) ; /* discont’d

*/
9 remove sw from ASW ;

10 else
11 RS ← result(sw and col) ;

/* part. cont’d */
12 remove sw from ASW ;
13 shrink sw to the partially overlapped range sw′;
14 ASW ← sw′ ;

15 for sweep window sw ∈ NSW do
16 if sw does not have the same window in ASW then
17 ASW ← sw

only partially continues in NSW . This sweep window will
be invalidated and regarded as a discontinued window (Case
2), and a new shrunk sweep window will be created with
the rows that continue from ASW to NSW (cf. L11-14).
In addition, new sweep windows in NSW which are not

covered by the above cases will be added to ASW (cf. L15-
17). Hence, the low-level patterns between two properties (i.e.,
the combinations of property value ranges satisfying the given
threshold λe) are obtained from the result set RS.

2) High-level Pattern Mining: The low-level patterns en-
able the framework to generate and validate high-level patterns
that involve three or more data sources (target included).
Candidate Generation. High-level pattern candidates can be
generated by intersecting low-level patterns. For example, pat-
tern candidate {sτpu |(C′∩C′′), {sαpx |C, sβpy |C}} can be generated
from the intersection of low-level patterns {sτpu |C′, {sαpx |C}}
and {sτpu |C′′, {sβpy |C}}. We only keep candidates whose prop-
erty value ranges are not empty.
Pattern Validation. A pattern candidate is considered valid
only if the number of the instance combinations it covers is
larger than λe · |sτ |. Valid high-level patterns are inserted into
the result set for further interactive analysis.
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V. VISUAL DESIGN

This section discusses analysis tasks, design rationales, and
the visualization techniques specifically designed for interpret-
ing the extracted patterns.

A. Design Rationales

Although the model can efficiently extract correlation pat-
terns, interpreting the massive correlations, detecting anoma-
lies, and obtaining high-level insights remain challenging.
Visualization techniques are highly necessary to help explore
the extracted correlation patterns.

In this study, we have conducted a user-centered design
process with three interdisciplinary urban planning experts
over the past year. These experts have more than 10 years
of experience in developing data-driven solutions for various
urban problems, such as location selection, energy planning,
and pollution analysis. They approached us to seek an in-
teractive visualization system for interpreting and analyzing
the correlation patterns among different heterogeneous data
sources, including city-wide meteorological and traffic data,
collected in urban environments. Through frequent discussions
with the experts, two important analysis tasks, macro- and
micro-level analyses, were identified.

Macro-level analysis. Users select proper mining param-
eters and wish to see the statistical distribution of all value
ranges regarding individual properties. Users also select prop-
erties and value ranges that they are interested in for further
analysis. A visual summary of correlation patterns should be
provided to help users determine a specific property combi-
nation and proceed to the micro-level analysis to inspect the
correlation patterns in this combination.

Micro-level analysis. A clear overview of the correlation
patterns of a given property combination should be provided.
Subsequently, users may group interesting patterns for obser-
vation and comparison. The spatiotemporal distribution of the
instances of the patterns should also be provided for further
validation and analysis of the patterns.

Based on these two analysis tasks, the design rationales
behind our system are derived and summarized below.
R1 Generating a visual summary of massive patterns

A large number of patterns is difficult to analyze individ-
ually, but these patterns are included in various property
combinations. Thus, users highly desire a visual summary.

R2 Allowing statistical analysis of properties
Obtaining an intuitive understanding of the overall data
range distribution is difficult. Users need a visualization
that presents the statistical information of the range dis-
tribution of each data property.

R3 Enabling interactive visual exploration of patterns
The system should allow domain experts to interact with
the patterns directly by supporting various interactions like
filtering, ranking, and grouping to unfold the patterns.

R4 Visualizing the spatiotemporal information of patterns
A pattern can be associated with many spatiotemporal
instances. The system should show the spatiotemporal
trend of the pattern.

R5 Applying different model parameters
The mining model may not always produce the desired

results. Thus, user interaction with the model should be
supported to select different results of the model.

In the design process, we identified three challenges,
namely, diversity, volume, and organization (detailed in Sec-
tion I). We tackle these challenges by designing CorVizor
with four linked views, including CorView, STView, StatView,
and PatTable (Fig. 4), based on the aforementioned rationales.
CorView is the core component and provides a matrix-style
visual summary of the patterns of all property combinations
(R1). Multi-level interactive exploration is naturally supported
(R3). StatView displays the distributions of value ranges
of different data source properties (R2). STView shows the
spatiotemporal information of the target instances associated
with the patterns (R4). PatTable presents the details of the
selected patterns in a table (R3). Choosing different model
parameters are also supported (R5) in the Info Panel (Fig. 4(a)
and Fig. 10(a)).

B. CorView
This section presents the design of CorView, which vi-

sually summarizes the patterns of property combinations
(Section V-B1) and interactively unfolds those of a selected
property combination (Section V-B2).

1) Visualization of Property Combinations: We adopt a
scalable matrix-based approach (the volume challenge) to
visualize the property combinations shared by massive cor-
relation patterns (R1) and provide an unified overview for
the diverse data properties among the patterns (the diversity
challenge). The matrix-based approach is easy to understand
and allows users to make efficient visual comparisons of the
property combinations in an aligned manner.

Each column in the CorView represents a property, and each
row (Fig. 4(i)) represents a group of correlation patterns with
the same set of properties (i.e., the same property combina-
tion). The properties in the target data source and other data
sources are marked in green and orange, respectively. The
properties in each row are encoded by a set of linked brick-
like density glyphs. Each glyph contains a density map (Fig.
4(c)), which reveals the distribution of the value ranges in
the patterns with the same combination of properties for the
corresponding property. The links between glyphs indicates the
correlation of properties. The numbers of patterns and pattern
instances for each property combination are visualized with
two bars in each row (Fig. 4(d)). The blue area in each bar
(Fig. 9(j)) indicates the number of the selected patterns or
instances in other views. By clicking on the column headers
(Fig. 4(b, k), users can filter out the property combinations that
do not contain the selected properties or sort the combinations
based on the numbers of patterns or instances.

2) Visualization of Correlation Patterns: Users can unfold
a property combination in the CorView and analyze the
patterns with the selected combination using a similarity-based
scatterplot (R1), a tailored parallel coordinates plot, and a
stacked line chart (Fig. 4(h)) in the expanded view (Fig. 4(e)).
The scatterplot provides an overall picture of the similarity
among correlation patterns, thereby enabling users to group
the patterns and detect anomalies. The parallel coordinates plot
depicts the correlation among multiple properties, where the
value range distributions of the patterns w.r.t. each property are
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Fig. 4: CorVizor consists of four main views (CorView, STView, StatView, and PatTable) for detecting and understanding
correlation patterns.

encoded with a density map on the axis. The stacked line chart
further provides a compact visualization of the value ranges
of the selected patterns. These scalable visualizations are
combined to organize patterns without severe visual clutters
and facilitate the effective exploration of both the overview
and details (the volume and organization challenges).

Scatterplot. Analyzing the relationship between patterns
is important for pattern grouping, comparison, and anomaly
detection. A scatterplot is used to display the correlation
patterns, such that similar patterns are naturally grouped
together. This scatterplot provides a concise overview of
pattern relationships with less clutter than parallel coordinates.
The multidimensional scaling (MDS) is used to create the
scatterplot. The distance of patterns i and j is computed with√∑n

k d(ik, jk)
2 , where n is the number of properties in the

pattern, k denotes property k, and d(ik, jk) is the distance
between the two ranges with regard to property k of pattern
i and j. The Jaccard index and KL divergence were tested
to calculate the distance. However, distance is regarded as a
constant value by both measures when two ranges are disjoint
regardless of how far the ranges semantically appear. Thus,
a new measure is used. In this new measure, four features
are extracted from each range: lower bound (lb), upper bound
(ub), median (mid), and length (len). All features are normal-
ized. The range distance of property k is measured with the
Euclidean distance of the pair of ranges, namely, d(ik, jk) =√
∆lb2 +∆ub2 +∆mid2 +∆len2, where ∆ represents the

difference between two feature values. For those categorical
properties that can be ordered, we assign numeric values for

each category starting from 1 by the categorical order and
compute the range distance based on these values. For those
categorical properties that cannot be ordered, we map the
text descriptions of those categories to high-dimensional space
with word2vec [31], [32]. The word2vec model can generate
a high-dimensional vector for each word considering their
semantics in a series of sentences. The Euclidean distance
between two vectors indicates the semantic similarity between
two corresponding words. As such, the distance between the
two categories can be measured. Users can group patterns and
highlight anomalies by brushing the corresponding points with
various colors.

Parallel coordinates. Correlation patterns can have a high-
level form (Section IV-C2) with more than three properties
involved. Thus, parallel coordinates are used as a uniform
view to display the multidimensional correlation patterns. Each
axis represents a property. The medians of the ranges are used
as the end points of the line segments to connect the value
ranges in various property axes. Considering that overlaps exist
among ranges of the same property, we do not adopt parallel
sets as it is more suitable for categorical and disjoint data.

The range distribution is displayed with a density map on its
corresponding axis (Fig. 4(f)). A density map is used instead
of other methods, such as histogram, because it consumes less
space and compactly shows the density information of the
property value. In each density map, value ranges are drawn
along each coordinate with equal opacity. The ranges are
overlaid and their opacity values are combined to encode the
density (i.e., dark areas indicate that the corresponding values
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Fig. 5: Example of the visual encodings of the stacked line chart (b) and parallel coordinates (c) for a pattern in (a).

or categories are covered by many ranges). Fig. 5 (a) shows an
example of a pattern and Fig. 5 (c) shows the corresponding
visual representation with tailored parallel coordinates.

Stacked line chart. When a set of patterns are grouped
in the scatterplot, a new row summarizing the pattern group
is automatically generated and attached under the scatterplot
and parallel coordinates. Fig. 4(g) shows one of the three rows
of the grouped patterns. When a user unfolds a row, the row
is expanded to show a stacked line chart (Fig. 4(h)). In the
chart, the value range for each property is represented by a
fine line segment. The segments are stacked to compose a
distribution map. Fig. 5(b) shows an example of the chart,
where the left and right endpoints of the line segments denote
the two endpoints of the range.

3) Design Alternatives: In the aforementioned user-centric
design process, we attempted to refine the visual design of
CorVizor iteratively by proposing and evaluating alternatives.
In this section, two design alternatives are discussed to reveal
the rationales behind our design choices in terms of the macro-
and micro-level analyses of correlation patterns.

Visualization of patterns in many property combina-
tions. Instead of organizing property combinations with a
matrix-based CorView, we attempted to maintain the structure
of these combinations with a node-link diagram (Fig. 6(a)).
Each node in the diagram represents a property combination.
The directed edges in the diagram indicate the composition of
subsequent combinations. In each node lies a glyph, which
encodes the distribution of property value ranges, and the
size of the glyph shows the number of pattern instances.
Moreover, we allow users to apply filters to keep the desired
combinations by selecting properties on the top. Although such
an alternative clearly reveals the inherent structure of property
combinations, three major weaknesses prohibit it from being
applied in our system, that is, a) the proposed node-link
diagram costs excessive screen space; b) the crossing edges
introduce serious visual clutters and are thus not scalable;
and c) the distributions of property value ranges in different
nodes are difficult to compare because they are not aligned.
Hence, we decided to adopt a compact matrix-based view and
facilitate the comparison between properties with alignment.

Visualization of patterns of a property combination. To
help analysts grasp the similarity among massive correlation
patterns, we initially projected these patterns into a 2D view
via dimensional reduction techniques. Inspired by Liu et
al. [27], we attempted to depict these patterns with glyphs

embedded directly into the view (Fig. 6(b)). On the edge of
the glyph lies a circular histogram that encodes the temporal
pattern distribution of a single pattern, and the properties
involved in the pattern are represented by homocentric donut
charts. However, such an approach is not scalable with the
number of patterns. The value ranges encoded with radians
can also be misleading. Hence, we iterated our design by
dissecting the high-dimensional information in these patterns
with multiple coordinated views as described previously.
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visualization for correlation patterns.

C. StatView
Although CorView shows the property combinations and

their correlation patterns, the value range distribution aggre-
gated by properties remains unavailable. This information is
essential for high-level exploration. Thus, StatView is used
to display the pattern distribution of each property (Fig. 4)
(R2). This pattern distribution comprises small multiples that
display the distributions of the value ranges for the properties.
An individual plot of a property displays a value distribution
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in a line chart (upper part) and presents a range distribution
in a stacked rectangle chart (lower part). Both parts have their
counterparts in CorView. The upper and lower parts corre-
spond to the density map and stacked line chart, respectively.

StatView uses a line chart to encode the density distribu-
tion of the values or categories of each property. Position
information is considered perceptually effective in encoding
magnitude [35]. Moreover, StatView has more space to display
the distribution information. Thus, we utilize position rather
than luminance to encode the distribution information. The
same value or category ranges are aggregated, and a rectangle
is used to represent each unique range in the stacked rectangle
chart. The height of a rectangle represents the number of
occurrences of the associated range.

Users can brush a span of the property value on the
horizontal axis of any line chart to perform filtering. Other
views can be subsequently updated. StatView supports three
types of filtering interactions. The selected patterns should
satisfy the following constraints (1) s ∩ d ̸= ∅, (2) s ⊂ d,
and (3) s ⊃ d, where s indicates the brushed span and d
denotes all data correlation patterns.

D. STView

STView allows users to gain insights into the spatiotemporal
trends of the patterns (R4). The bottom of the view shows a
histogram to visualize the temporal distributions of pattern
instances with multiple scales. Users can easily select patterns
by brushing a temporal window (Fig 4(j)). When the patterns
are grouped in CorView, the histogram shows the temporal
distributions of pattern instances of different groups by using
stacked bars. The top of the view shows the spatial distribution
of the pattern instances on a map. In this study, we use air
quality data as the target data source. Each air quality station
is represented by a donut chart whose radius encodes the total
number of pattern instances in this location. The sectors in
different colors indicate the ratios of the pattern instances of
each group selected from CorView in each location. Donut
charts are used instead of pie charts because the former has a
blank center. Users can see through it to observe the details.

When a user hovers his or her mouse on a glyph, a circle
around the glyph is displayed to show the coverage of the
associated station, namely, the size of the spatial window used
in the mining model. The circle covers the spatial area whose
correlation instances can be viewed as being co-located with
the air quality station. Users can select several stations to see
the related correlation patterns in other views.

E. PatTable

PatTable is a table-like component that allows users to
inspect raw patterns directly on demand. Each row represents
a property combination. The combinations can be unfolded to
show the corresponding patterns. Detailed information for each
individual pattern, such as the number of instances and the
correlated property value ranges, is depicted in the unfolded
view. Moreover, PatTable is coordinated with CorView, where
user interactions in one view are reflected in the other view.

F. User Interactions

CorVizor supports various basic and advanced interactions.
⋄ Showing overview first and details on demand. CorView

shows a succinct overview of all property combinations.
Users can click on a row to explore the corresponding
property combination in detail.

⋄ Brushing and filtering. Users are allowed to group patterns
or spot anomalies by brushing the patterns with colors in a
scatterplot in CorView. Users can filter by spatial area, time
range, and property value range in STView and StatView.

⋄ Changing the model parameters. Users can change the
parameters including the spatiotemporal threshold and min-
imum correlation coverage (Fig. 10(a)) and see new results
(R5). The histogram (Fig. 10(b)) shows the distribution of
the normalized range widths of all correlation patterns.

VI. EXPERIMENTS

This section presents model evaluation, case studies, and
expert interview to evaluate the effectiveness and usability of
the proposed system. The experimental data contain the 16
data properties from the three data sources listed in Table I
in Section III-A. The data were collected from a large city.
Data collection was conducted from February 1 to May 31 in
2014. Weather data were collected hourly from 20 weather
monitoring stations around the city. Air quality data were
collected hourly from 36 air quality monitoring stations in the
city, and traffic data were collected from 100, 215 segments
of the city road network every half hour from a geospatial
mapping platform. To sum up, there are 103 thousand records
in the air quality data, 57 thousand records in the weather
data, and 577,238 thousand records in the traffic data. All
experiments were evaluated on a laptop running Windows 10
with Intel Core i7 3.4GHz CPU, 256GB SSD drive, and 16
GB RAM.

A. Model Evaluation

The proposed sweep-line algorithm is the core component
of our pattern mining model. We compared it with a naive
approach to demonstrate its efficiency and effectiveness.

Naive Approach. The naive method to identify distinctive
rectangles from a value matrix follows the following steps.
First, every cell in the matrix is scanned. Second, if a qual-
ified cell (fulfilling the correlation coverage requirement) is
identified, the naive approach considers the cell the left-up
corner of certain distinctive rectangles and traverses toward
right and down directions to find the rectangles as candidates.
Third, each candidate rectangle is tested to see if it is com-
pletely covered by other rectangles identified previously. If
overlapping cases exist, the candidate rectangle is discarded.
Otherwise, the identified rectangle is inserted into the result
set. The cost of the approach is prohibitively high. Assuming
that an M×N matrix exists, the approach needs to traverse the
entire matrix to identify qualified cells in the outer iteration.
For each qualified cell, the approach needs to traverse the
remainder of the matrix to identify the distinctive rectangles
and test their qualification, which may result in O(M2N2) in
the worst case. In contrast, our method has the time complexity
of O(MN) as we only need to scan the matrix once.
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Fig. 7: Comparison of the time performances of the proposed
sweep-line algorithm and naive mining method.

The comparison was performed with the varying correlation
coverage, spatial window, and temporal window. Fig. 7 shows
the results of the time performance comparison.

1) Temporal window. Fig. 7(a) shows that the time of both
approaches increases with the increase in the temporal win-
dow. A large temporal window usually generates a large value
range, which increases the probability of finding qualified cells
in the value matrix. The sweep-line algorithm outperforms the
naive approach, given that a significant number of redundant
cell examinations are avoided during the process.

2) Spatial window. Fig. 7(b) provides two observations.
First, with a large spatial window, the processing time of
both approaches increase because many co-related instances
are to be analyzed in a spatiotemporal partition. Second,
the difference in the performance of the two approaches is
significant, as the naive approach examines more qualified
cells and incurs more computational time.

3) Correlation Coverage. Fig. 7(c) presents two observa-
tions. First, the processing time of both approaches decreases.
Second, the sweep-line algorithm performs better than the
naive one because a large correlation coverage value results
in a small chance of finding a qualified cell (i.e., qualified
patterns) in the value matrix.

B. Case Studies
The case studies were conducted with the domain experts

to evaluate the effectiveness of our system.
1) Macro Analysis: Correlations Relevant to High SO2:

This case study demonstrated the effectiveness of CorVizor
for the macro-level analysis (detailed in Section V-A).

Selecting proper mining parameters was the first step to
explore the correlation patterns. The domain experts suggested
5 km and 4 hours for spatial and temporal window based on
their experience. However, the correlation coverage threshold
is difficult to choose. The experts attempted the thresholds
0.5%, 1%, and 3%. The distributions of the normalized range
widths generated by these thresholds are presented in Fig. 8(a),
and the associated statistical information on the extracted
patterns is depicted in StatView (Fig. 8(b)). Based on their
observations, the experts selected 1% as the threshold because:
a) although the histograms generated by the thresholds 0.5%
and 1% seemed similar, the patterns represented as stacked
rectangles in StatView with the threshold 1% were more
organized and meaningful than those with 0.5%; and b) the
patterns extracted with the threshold 3% was too coarse to
reveal any useful insights. Thus, the threshold 1% (Fig. 10(a))
was selected by the experts for further explorations.

Urban air pollution, which is crucially related to the well-
being of city residents, has attracted increasing concerns in

recent years. Therefore, the experts attempted to identify
the correlations between air quality and other urban data
sources with CorVizor. In particular, they were interested in
the correlation patterns relevant to high SO2 because SO2 was
one of the major pollutants produced by human activities in
cities. Hence, the experts selected the patterns that comprised
high SO2 in StatView. Fig. 9(b) showed that low traffic volume
was strongly correlated with high SO2 because the bars in the
range distribution view of traffic volume indicated that the
corresponding value ranges were relatively low and narrow.

These findings seemed contradicted with the experts’ intu-
ition, as they believed that only huge traffic volume would
result in severe air pollutant emission. Hence, they selected
traffic volume and SO2 in CorView for further exploration
(Fig. 9(c)). Only the property combinations that involved these
two selected properties remained in the view. The glyphs in
the first row (Fig. 9(d) and 9(e)) validated the aforemen-
tioned observation with StatView. By analyzing other rows,
the experts discovered that the number of low-speed vehicles
(Fig. 9(f)) was considerably larger than that of high-speed
vehicles (Fig. 9(g)) while the traffic volume (Fig. 9(h)) was
low and SO2 (Fig. 9(i)) was high. Thus, the experts suggested
that the large number of slow vehicles and small traffic volume
could be a sign of potential traffic congestions, which resulted
in the high SO2 emission. The correlation patterns among
traffic volume, low-speed vehicles, and AQI level were also
explored with the identical approach. The result was similar:
the air quality appeared to be bad with small traffic volume
and the large number of slow vehicles. This insight confirmed
that the small traffic volume correlated with severe traffic
congestions, which were a significant contributing factor to
the deteriorated urban air quality.

2) Micro Analysis: Correlations Involving Air Pollution:
The second case study demonstrates the usefulness of the
system in analyzing the correlation patterns associated with
a specific property combination.

Road space rationing policies were widely adopted by
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governments to alleviate serious air pollution. However, the
experts doubted the effectiveness of these policies. Hence,
they would like to analyze the correlation between traffic and
air pollution with our system. The combination of low speed
(%) and PM10 in CorView was selected in this study. The
corresponding row was expanded to show its details for an in-
depth exploration. Patterns that were extremely general were
filtered out by brushing the histogram of the normalized range
width (Fig. 10(b)). The patterns in the scatterplot under the
expanded row were grouped in different colors based on the
closeness of the patterns in the plot (Fig. 10(c)). The parallel
coordinates were colored accordingly (Fig. 10(d)). The red
group is considerably different from the blue and green groups
in parallel coordinates (Fig. 10(d)). The red group represents
“less low speed (%) and high PM10,” whereas the blue and
green groups indicate “more low speed (%) and high PM10.”

The experts were particularly interested in the red pattern
group. The stacked line chart of the group in Figs. 10(f) and
10(g) also indicates “less low speed (%) (i.e., traffic congestion
is unlikely to occur) and high PM10.” STView was used to
examine the spatiotemporal distribution of the patterns of the
selected groups (Fig. 10(e)). To experts’ suprise, the red group
only occurred in the area between Rings 5 and 6 of the
expressways, which is the suburban area of the city. One expert
indicated that there were several garbage incineration plants
in this area. Comparison between the distribution of the red
group patterns (Fig. 10(h)) and that of the garbage incinerators
(Fig. 10(i)) showed a clear match. They speculated that the
garbage incinerators could be highly correlated with the high
PM10 in the area, in which traffic congestion did not occur.
Further investigation and analysis in the field were required to
verify this conjecture and determine its plausible cause.

Furthermore, CorVizor was used to explore the correlation
patterns involving air quality index (AQI), which would in-
crease as air quality worsens. The experts were curious about
the reasons behind the worst air quality represented by the
highest AQI level with the value of 5. Thus, they drew a selec-
tion on the AQI property in StatView (Fig. 11(a)) to select the
patterns that involved the highest AQI level. From STView, the
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Fig. 9: Macro-level analysis of the correlation patterns that are
relevant to high SO2.

experts observed that most of these patterns occurred around
February (Fig. 11(b)). They suggested that air pollution might
be caused by coal heating in the winter, which emitted massive
pollutants and severely deteriorated the air quality. To confirm
this hypothesis, the experts selected the temperature and AQI
properties in CorView (Fig. 11(c)) and discovered that the
highest AQI level correlated with low temperature. Moreover,
the temporal distribution of these selected correlation patterns
was identical to that of the patterns involving the highest
AQI level (Fig. 11(d)). The temperature ranges in PatTable
were around 0 ◦C (Fig. 11(e)), which also provided useful
hints for this correlation. Furthermore, the experts attempted
to verify the correlation by selecting the patterns with low
temperature in StatView. They were satisfied to discover that
these patterns were all correlated to medium and high AQI
levels (Fig. 11(f)). These observations effectively supported
the experts’ hypothesis and helped them link the deteriorating
air quality with coal heating.

In this case study, the correlation patterns involving both nu-
merical and categorical properties were explored and analyzed
in detail. These detailed exploration and analysis demonstrate
the effectiveness of CorVizor in handling the micro-level anal-
ysis tasks and providing interesting insights into the correlation
patterns for further verification and analysis.

C. Interview with Domain Experts
After the case studies, we collected and summarized the

feedback from the experts as follows.
Overall System Usability. CorVizor was well received by

the experts. They were pleased to explore and analyze the
massive heterogeneous patterns intuitively with the proposed
interactive visualizations. “The visualization system makes the
correlation patterns produced by the data mining model much
more meaningful,” an expert said. Both experts acknowledged
that the analytical workflow of our system could help them
gain considerable insights into the spatiotemporal correlations.
Moreover, they believed that our system could be extended to
identify interesting correlations in various scenarios, such as
business location selection and travel recommendation.

Visual Design and Interactions. Both the experts were
impressed by the visual design and interactions. They praised
CorView, which presents the correlations among various data
properties explicitly. An expert commented “the matrix-like
layout is familiar to me and the hierarchical visualization
method well organizes the exploration process.” He was also
highly satisfied with the intuitive visual summary of the
correlation patterns provided in CorVizor. Another expert was
deeply impressed by the spatiotemporal view. “Without this
system, it would be impossible to discover interesting cases
related to the spatiotemporal distribution of the correlation
patterns,” he said. Both experts appreciated the interactive
features of the proposed system. They especially appreciated
the usefulness of filtering and brushing. The experts said
that these techniques help in anomaly detection and pattern
grouping and comparison.

Suggestion. The usability of our system was confirmed by
the experts, who immediately became familiar with the system
after a brief training. However, they suggested that the design
of our system could be simplified further, such as by replacing
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the scatterplot and parallel coordinate plot with a plain list
with numbers and figures. They also suggested that the design
should be integrated with visual guides to allow average users,
such as government officials to monitor the city dynamics
and grasp interesting insights conveniently. We will leave this
simplified version of our system as a part of our future work.

VII. DISCUSSION

In this section, we discuss the implications, limitations, and
generalization of the proposed system.

Implications. CorVizor can identify interesting correlation
patterns that may facilitate numerous transportation applica-
tions, such as traffic management and transportation planning.
Important insights revealed by these patterns, including how

the traffic speed and volume in a local area affect the con-
centrations of air pollutants, provide strong decision-making
contexts for urban planners to establish informed road policies
and long-term planning strategies in advance. Nevertheless,
correlations do not necessarily imply causation. Analysts may
not be able to come up with a clear actionable plan with only
correlations, and inferencing of causal relationships remains
a challenge. However, the present work still has several
important implications with regard to causal inference. First,
pattern correlations can reduce the search space of causal
inference. Second, the special characteristics of pattern corre-
lations can have significant implications for research on causal
inference. Moreover, with CorVizor, data mining researchers
can easily obtain an intuitive overview of a large number
of correlation patterns while checking the credibility of any
specific correlation pattern or group of correlation patterns.
As such, researchers can be informed of imperfections of the
data mining model, consequently inspiring them to enhance
the model’s effectiveness.

Limitations. The time performance of the correlation min-
ing framework is not highly optimized. Running the model
for our experimental dataset usually requires nearly an hour.
Data mining results for possible parameter combinations were
computed in advance to support the interactive adjustment of
the model results. We plan to optimize the model and adapt
it to a high-performance distributed computing platform, such
that the interactive adjustment of the model setting is made
possible. As for the design part of our system, MDS adopted
by the scatterplot is widely used in the visualization literature,
but it may be misleading at times [41]. To enhance the
scatterplot, the method for visualizing dimensionally-reduced
data [41] can be further incorporated into our system.

Generalization. CorVizor can be directly applied to various
urban analysis applications, such as urban planning, pollution
diagnoses, and location selection, to detect and understand
the correlation patterns in spatiotemporal datasets that support
effective decision-making processes. The case studies we
presented were conducted for pollution diagnosis. However,
the target data source can be changed to identify other in-
teresting correlations in other domains. For example, traffic
congestion [13], [46], [48] can be analyzed efficiently by
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setting traffic data as the target. In addition, the evolution of
business is closely related to many latent correlation patterns
extracted from various urban datasets [43], which can also be
captured by our framework.

VIII. CONCLUSION AND FUTURE WORK

In this work, we studied the extraction and interpretation
of fine-grained spatiotemporal patterns that comprise various
properties of different types, scales, and semantics. Based on
the proposed data mining framework and interactive multi-
scale visualization technique, we developed CorVizor, a visual
analytics system that assists users in exploring these patterns.
This study contributes an important step towards the in-depth
understanding of urban dynamics formed by the complex cor-
relation patterns extracted from heterogeneous spatiotemporal
data sources, including transportation data.

We will continue on improving our system in several ways
as follows. First, we plan to migrate the correlation mining
module to a high-performance distributed computing platform.
Users can directly interact with the model and see the results
instantly in CorVizor. Second, we will deploy CorVizor in
the field, such that the streaming datasets collected from
diverse sources can be fed into the system in real-time, thereby
enabling a proactive analysis workflow of urban problems.
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